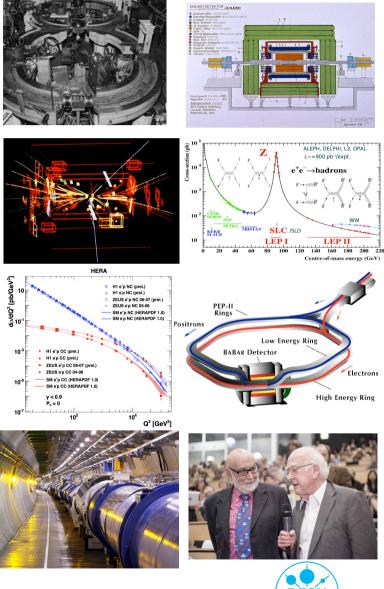
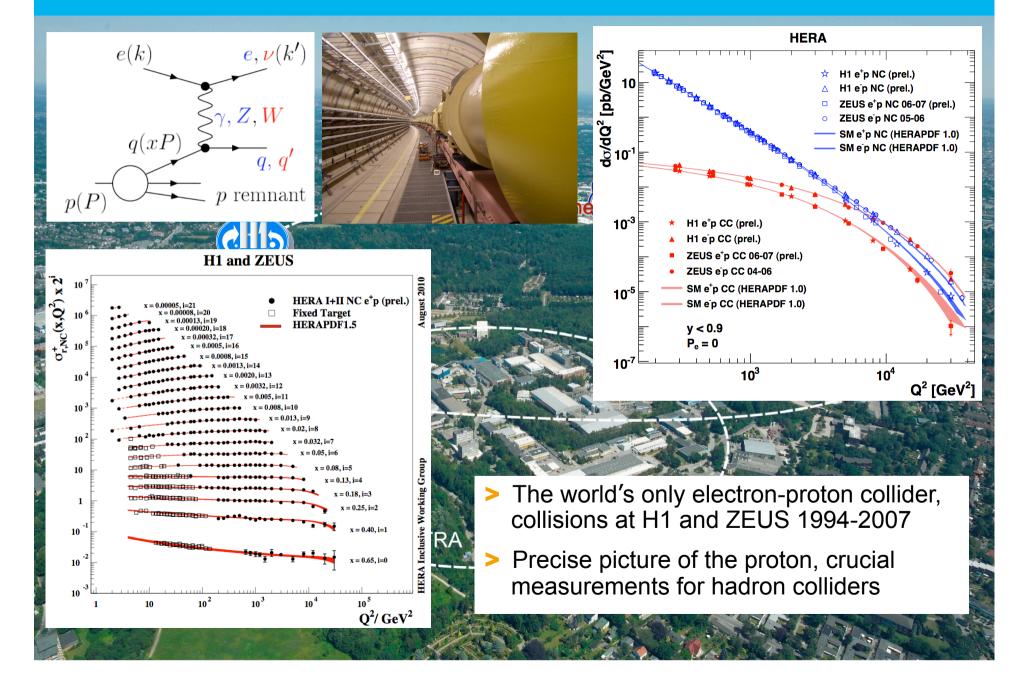
A Validation Framework for the Long Term Preservation of High Energy Physics Data

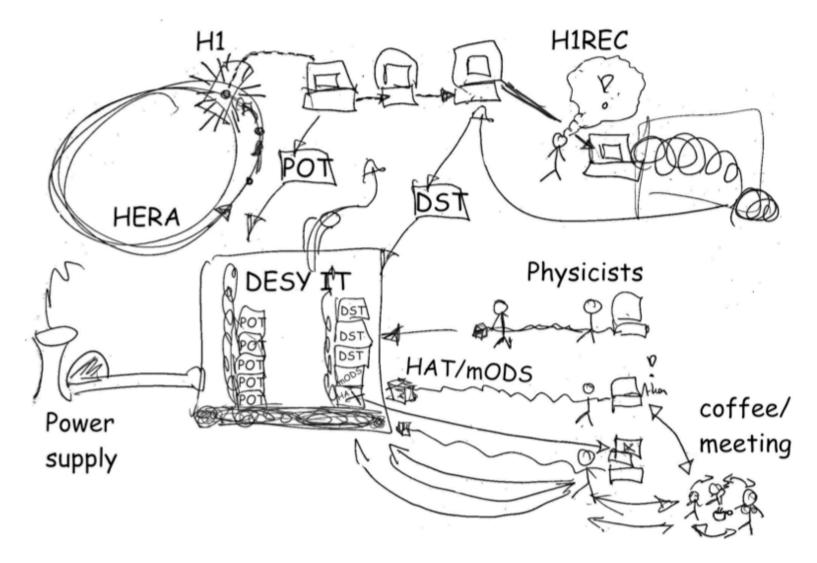
Securing HEP data for future analysis

LOPS @ ICDE March 31st, 2014 Holiday Inn Chicago Mart Plaza David South (DESY), Dmitri Ozerov (DESY) on behalf of the DESY-DPHEP Group arXiv:1310.7814

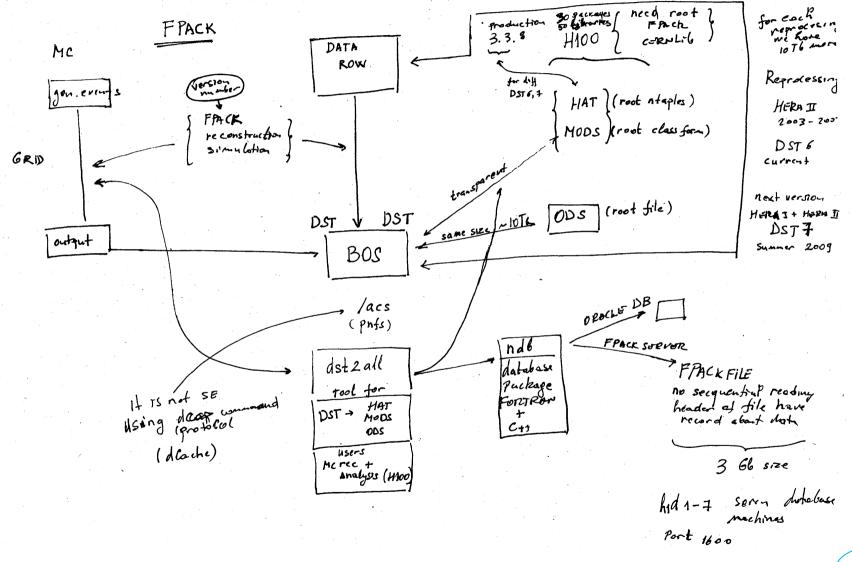


Experimental particle physics in the collider era

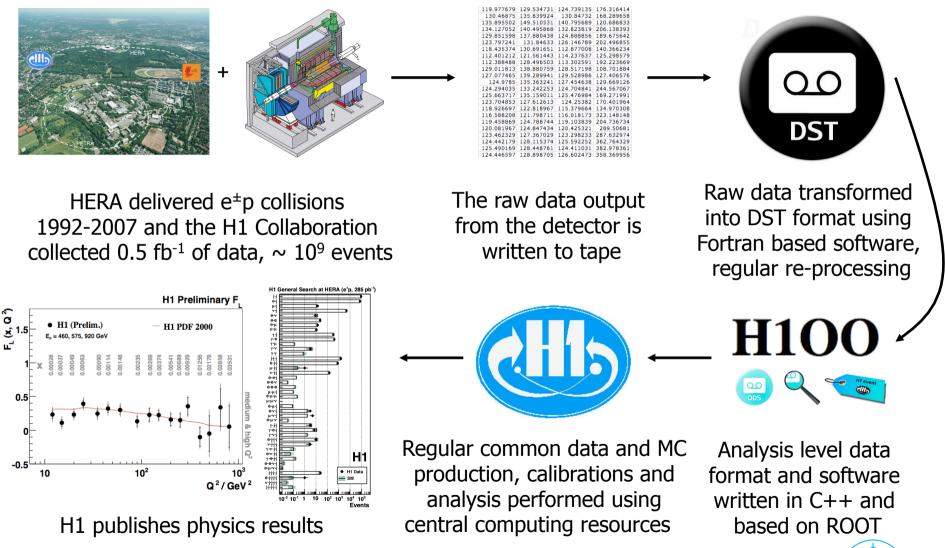

- A wide variety of physics results from many, often very different experiments
- Energy frontier probed with increasingly complex accelerator installations
 - From single room colliders in the late 1950s to installations measured in kilometres
 - Results from newer experiments typically, but not always, supersede those of similar older ones
- Srowth in size of the international collaborations, increase in the diversity of the data management
- We are now in the age of the Higgs boson and the LHC, with Petabytes of data
 - Belle 2, HL-LHC, and other projects such as the ILC or the next e-p/A collider still to come


1992: Hadron-Electron Ring Accelerator (HERA) @ DESY

1992: Hadron-Electron Ring Accelerator (HERA) @ DESY



Workflow of a high energy physics experiment (1)


Workflow of a high energy physics experiment (2)

David South | A Validation framework for long term preservation of HEP data | 31.03.2014 | Page 6

Workflow of a high energy physics experiment (3)

The last years have seen the end several older experiments

What do you do when the collisions have stopped?

- > Finish the analyses! But then what do you do with the data?
 - Until recently there was no clear policy on this in the HEP community
 - In the main, older HEP experiments have simply lost the data
- Data preservation, including long term access, is generally not part of the planning, software design or budget of an experiment
 - So far, HEP data preservation initiatives have been in the main not planned by the original collaborations, but rather the effort a few knowledgeable people
- > The conservation of tapes is <u>not</u> data preservation!
 - "We cannot ensure data is stored in file formats appropriate for long term preservation"
 - "The software for exploiting the data is under the control of the experiments"
 - "We are sure most of the data are not easily accessible!"

The difficulties of data preservation in HEP

- Experiments are generally interested in the here and now
 - Until recently the issue of data preservation was not really considered at the LHC
- Handling HEP data involves large scale traffic, storage and migration
 - The increasing scale of the distribution of HEP data and evolving access methods may complicate the task
- > Who is responsible? The experiments? The computing centres?
 - Problem of older, unreliable hardware: unreadable tapes after 2-3 years
 - The software for accessing the data is usually under the control of the experiments
- > Key resources, funding and expertise, decrease after data taking stops
- > And importantly: *Who says we want to do all this anyway*?
 - Is the potential benefit really worth the cost and effort? And how much does it cost?
 - Can the relevant physics cases be made?

DPHEP: An international Study Group on data preservation

- First contacts established 2008, endorsed as an ICFA panel 2009
 - Group since grown to over 100 contact persons
 - Initial make up of the group was driven by the coincidence of the end of data taking at several large colliders – SLAC, HERA, Tevatron
 - Has grown to include many others including the LHC experiments
- Steering Committee with representatives from all members
- International Advisory Committee

DPHEP: All major High Energy Physics players represented

DPHEP: Series of workshops held since 2009

Series of DPHEP workshops held since 2009

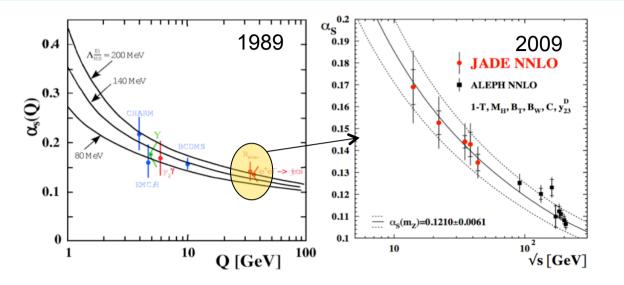
- Dedicated sessions at Computing in High Energy Physics conferences
- More recently: meetings focussing on dedicated topics such as "Costs of Curation" and "DPHEP Portal" (planned for later this year)
- > 2009: Short publication, four key areas of the study group: Physics Case for Data Preservation, Preservation Models, Technologies, Governance

arXiv:0912.0255

DPHEP: Publication of the key findings

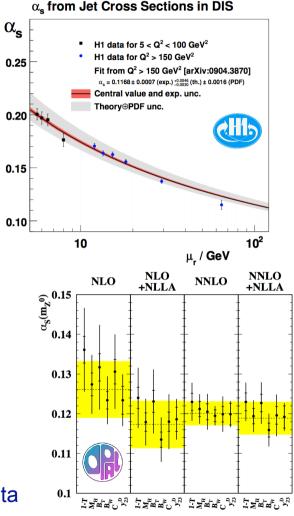
- > 2012: Full status report of the activities of the DPHEP Study Group, including:
 - Tour of data preservation activities in other fields
 - An expanded description of the physics case
 - Defining and establishing data preservation principles
 - Updates from the experiments and joint projects
 - FTE estimates for these and future projects
 - Next steps to establish fully DPHEP in the field

	DPHEP-2012-001 May 2012
S	Status Report of the DPHEP Study Group: Towards a Global Effort for Sustainable Data Preservation in High Energy Physics
	www.dphep.org
	Abstract
	Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. An inter-experimental study group on HEP data preservation and long-term analysis was convened as a panel of the International Committee for Future Accelerators (ICFA). The group was formed by large collider-based experiments and investigated the technical and organisational 2009 addressing the general issues of data preservation in HEP. This paper includes and extends the intermediate report. It provides an analysis of the research case for data preservation and a detailed description of the various projects at experiment, laboratory and international levels. In addition, the paper provides a concrete proposal for an international organisation in charge of the data management and policies in high-energy physics.
	Study Group for Data Preservation and Long Term Analysis in High Energy Physics



Building the physics case: Reasons to preserve HEP data

- Long term completion and extension of an existing physics program
 - Up to 25% of papers are finalised in the "archival mode". Publications still coming!
 - Gain in scientific output of the experiments
- Cross-collaboration and combinations of physics results
 - During the active lifetime of similar experiments at one facility: LEP, HERA, TeVatron
 - And later across larger boundaries: Belle/BaBar, TeVatron/LHC
- > Revisit old measurements or perform new ones
 - Access to newly developed techniques, comparisons to new theoretical models
 - Unique data sets available in terms of energy, initial states
- > Use in scientific training, education, outreach
 - Simplified formats: associated exercises to perform e.g. composite-particle reconstruction, finding signals in the background, ...



Example: Revisit old measurements or perform new ones

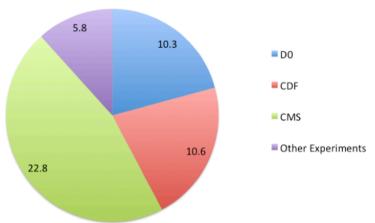
- Access to newly developed techniques, comparisons to new theoretical models
 - History may be repeated with the HERA α_s measurements
- Unique data sets are available in terms of initial state particles and energy
 - If no LHeC or alternative, all he have are the HERA e[±]p data
 - Tevatron pp̄ are also unique: A_{FB}, high-x jets, …
 - Fixed target experiments, ... others, ...

Ok, so it's worth doing. Define some preservation models

- First you need to ask the question: What is HEP data?
 - Digital information, software, meta-data, documentation, publications, expertise, ...
 - Define preservation levels according to use case and expectation

its	Ρ	reservation Model	Use Case	
enef	1	Provide additional documentation	Publication related info search	Documentation
d br	2	Preserve the data in a simplified format	Outreach, simple training analyses	Outreach
complexity and benefits	3	Preserve the analysis level software and data format	Full scientific analysis, based on the existing reconstruction	Technical
comple	4	Preserve the reconstruction and simulation software as well as the basic level data	Retain the full potential of the experimental data	Preservation Projects

- > Originally idea was more of a progression, almost like an inclusive level structure, but now seen as complementary initiatives
- > Three levels representing three areas:


Increasing cost,

Documentation, Outreach and Technical Preservation Projects

The HEP data themselves are not the problem

- What is clear from estimates of data size, is not prohibitive: numbers between 0.5 to a 10 PB
- Computing centres are, at least by volume arguments, able to store the data
 - Data preservation in HEP is not about the data!
- Regular migration of the data to latest technologies should be considered and carefully planned
- Currently employed storage systems may not be suited for archival storage: Requires regular integrity checks, rather than occasional use
 - Any archival system should be able to absorb future technological evolutions
- What is much more crucial is the preserving the software and environment, which allows analysis to continue into the future
 - This is the challenge facing HEP experiments

49.47 Active Petabytes On Tape 3/1/2014

David South | A Validation framework for long term preservation of HEP data | 31.03.2014 | Page 18

Isn't it obvious, virtualisation will solve everything?

My first and very naïve ansatz

- > OK, why don't we just put everything an a virtual machine?
 - Data archival is done elsewhere, just need "to plug that into the VM"
 - Your VM contains everything you need to develop and run code and analysis
- The problem would then be reduced to maintain virtual images, and maintain their ability to run. In the Cloud era, seems like a trivial task
- > Problems: Everything in IT is a moving target:
 - Will your network always be the same?
 - Will your access protocol always be the same?
 - Are you sure you do not need new software (e.g. MC generators) that require a new OS?
 - Are you sure your i386/SL4 VM will produce the same results when emulated on a quantum computer in NN years?
 - What about service you need, like CondDB,...
- > Naïve virtualization will not work... but still, virtualization can help

Freezing vs rolling



Pro Freezing

- One-time effort, very small maintenance outside of analysis phase
- Also allows software w/o code (but might fail with DRM / licensing issues)

Cons Freezing

- Rely on certain standards and protocols that may evolve
- Potential performance problems

Pro Test-driven migration

- Usability and correctness of code is guaranteed at every moment
- Data accessibility and integrity can be checked as well
- Fast reaction to standard/protocol changes
- General code quality can improve, as designed for portability and migration

Cons Test-driven migration

- Needs long-time intervention, more man-power and resources needed
- Some knowledge of the frameworks must be passed to maintainers

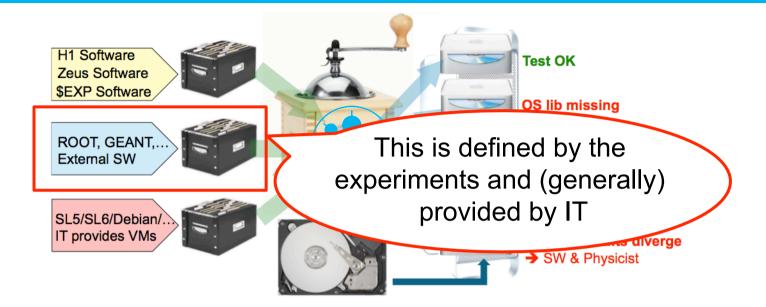
Yves Kemp (DESY-IT)

Pizza Preservation

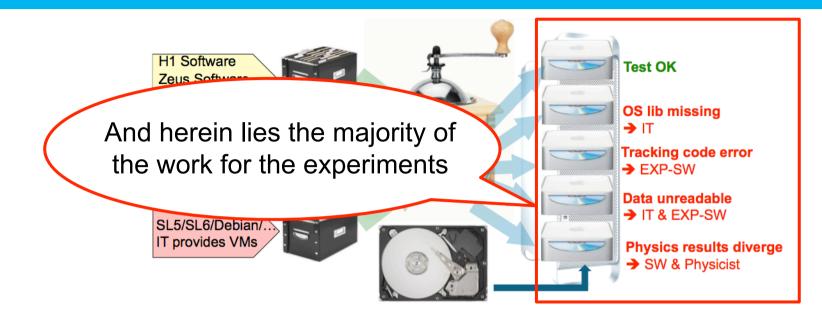
- Couple of days
 - Fridge
- Couple of month
 - Deep freezer
- Couple of years???
 - Preserve the recipe
 - Practice it often: You will not forget the recipe and you can detect variations in external dependencies

- Whilst freezing the software and environment is easy to do, long term use and correctness of the results not guaranteed
 - Naïve assumption virtualisation solves everything may break down at the first security issue
- Freezing software is OK if the timeline and scope are reduced, but if changes are needed this is more difficult the longer software is frozen
- Better to cook the same recipe again and again (and maybe even allow it to be improved), validating the output *automatically*
 - Virtualisation can help!

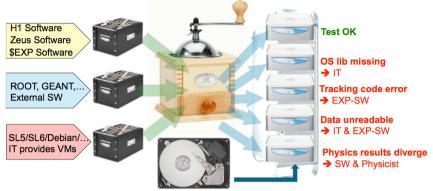
Yves Kemp (DESY-IT)


- Uses virtualisation techniques to repeatedly run well defined tests
- Perform checks of different and evolving environments (OS, s/ware configuration)
- Stand alone system: No hidden dependencies or /afs access etc: rigorous testing
- Automatically check these results against predefined, default values
- Notify when test results differ from these values
- Separate responsibilities of IT and the experiments

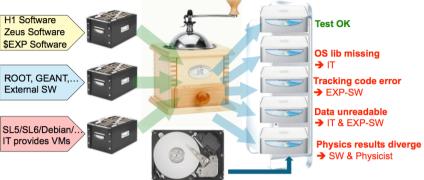
- Uses virtualisation techniques to repeatedly run well defined tests
- Perform checks of different and evolving environments (OS, s/ware configuration)
- Stand alone system: No hidden dependencies or /afs access etc: rigorous testing
- Automatically check these results against predefined, default values
- Notify when test results differ from these values
- Separate responsibilities of IT and the experiments


- Uses virtualisation techniques to repeatedly run well defined tests
- Perform checks of different and evolving environments (OS, s/ware configuration)
- Stand alone system: No hidden dependencies or /afs access etc: rigorous testing
- Automatically check these results against predefined, default values
- Notify when test results differ from these values
- Separate responsibilities of IT and the experiments

- Uses virtualisation techniques to repeatedly run well defined tests
- Perform checks of different and evolving environments (OS, s/ware configuration)
- Stand alone system: No hidden dependencies or /afs access etc: rigorous testing
- Automatically check these results against predefined, default values
- Notify when test results differ from these values
- Separate responsibilities of IT and the experiments



- Uses virtualisation techniques to repeatedly run well defined tests
- Perform checks of different and evolving environments (OS, s/ware configuration)
- Stand alone system: No hidden dependencies or /afs access etc: rigorous testing
- Automatically check these results against predefined, default values
- Notify when test results differ from these values
- Separate responsibilities of IT and the experiments



- 1) Experimental software is consolidated and migrated to the most recent OS
 - Unnecessary dependencies are removed, necessary ones incorporated into the system
 - Analysis and data validation tests defined
 and prepared, examining each part of the experimental software required

- 1) Experimental software is consolidated and migrated to the most recent OS
 - Unnecessary dependencies are removed, necessary ones incorporated into the system
 - Analysis and data validation tests defined
 and prepared, examining each part of the experimental software required
- > 2) Regular build of the experimental software is done automatically according to the current prescription of the working environment and the validation tests are performed
 - At regular intervals, new OS and software versions will then be integrated into the system, under the supervision of experts from the host IT department

- 1) Experimental software is consolidated
 and migrated to the most recent OS
 - Unnecessary dependencies are removed, necessary ones incorporated into the system
 - Analysis and data validation tests defined
 and prepared, examining each part of the experimental software required
- > 2) Regular build of the experimental software is done automatically according to the current prescription of the working environment and the validation tests are performed
 - At regular intervals, new OS and software versions will then be integrated into the system, under the supervision of experts from the host IT department
- > 3) Validation successful: no further action to be taken; test fails, differences compared to the last successful test are examined and problems identified
 - Interventions then required either by the host of the validation suite or the experiment themselves, depending on the nature of the reported problem

Test OK

→ IT

OS lib missina

EXP-SW

Tracking code error

Physics results diverge → SW & Physicist

Data unreadable → IT & EXP-SW

External SW

SL5/SL6/Debian/.

IT provides VMs

- 1) Experimental software is consolidated
 and migrated to the most recent OS
 - Unnecessary dependencies are removed, necessary ones incorporated into the system
 - Analysis and data validation tests defined
 and prepared, examining each part of the experimental software required
- > 2) Regular build of the experimental software is done automatically according to the current prescription of the working environment and the validation tests are performed
 - At regular intervals, new OS and software versions will then be integrated into the system, under the supervision of experts from the host IT department

External SW

SL5/SL6/Debian/.

IT provides VMs

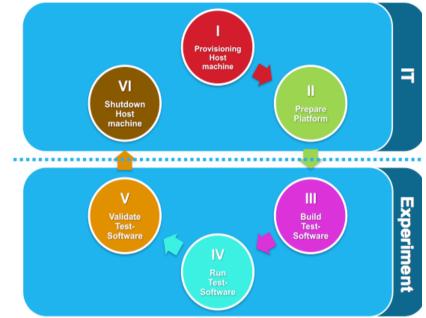
- > 3) Validation successful: no further action to be taken; test fails, differences compared to the last successful test are examined and problems identified
 - Interventions then required either by the host of the validation suite or the experiment themselves, depending on the nature of the reported problem
- > 4) Final phase: when person-power becomes an issue or an unsolvable problem occurs: preserve final image, finite lifetime

Test OK

→ IT

OS lib missina

EXP-SW


Tracking code error

Physics results diverge → SW & Physicist

Data unreadable → IT & EXP-SW

The sp-system: Towards the full implementation

- Pilot project in 2010
 - Single configuration, simple tests
- Full implementation now at DESY
- Common baseline of Scientific Linux 5 32-bit achieved in 2011 by all expts
 - Sound starting point for validation
- Multiple OS configurations available within sp-system:

- **sl5.6/64**(gcc4.4), **sl5.7/32**(gcc4.4), **sl5.7/64**(gcc4.1), **sl5.7/32**(gcc4.1), **sl6.2/64**(gcc4.4)
- > In addition, to multiple ROOT (analysis software) versions
 - **5.26**.00d, **5.28**.00c, **5.30**.05, **5.32**.00, **5.34**.01
- > 64-bit systems a major step toward migrations to future OS and hardware
 - SL6 will only be supported in 64 bit variant at DESY
 - nfs4.1 technology, to be used in dCache, native only in SL6.2/64 or higher

First sketch of H1 tests

************ ++h1 executables *********** *********** antir batch_kinit carti chk tree dig **fpack** fplist Ipmerge psubset h1fttemu h1geaonly h1ieeefp.o / h1ieeefp.cpp h1rec + hilds h1sim h1simcheck h1simrec hostn 145his **14his** l4m l4s look Itab / ndbint ngs2pbs pbs_tclsh pbs wish pbsdsh pbsnodes printiob printfracking galter adel odisable oenable ghold amar qmove amsa gorder arerun gris grun aselect qsig ostart qstat / astop gsub atermrefresh refresh_init tracejob

xpbs xpbsmon.

********** 5655 ++h1 libraries ********** ********** #cemlib-gcc44 libLHAPDF.so libariadne412.a libbases.a libbos.a libcascade2.a (20) libdatman.a libdiffvm.a libfpack.a libfpack.so libgksdummy.a 2 libh1bstrec.a libh1eclass.a libh1fttemu.a libh1geang.a libh1geanh.a libh1geant.a libh1l4.a libh1look.a libh1mcutil.a libh1ndb.a libh1phan.a libh1qt.a libh1rec.a libh1sim.a libh1trig.a libh1util.a libheracles*.a libheracles*.so libhztool.a libjetset74.a liblook.a libpythia62.a libpythia64.a librapgap31.a libshift.a

************ ************ 36 ++h1oo packages 51 ************ *********** H1Analysis H1AnalysisExample H1Arrays H1Banks D H1Benchmarks H1Binning H1Bos2oop H1CalcPointers H1CalcWeights H1Calculator Usor Timing (42) H1CalibTrigger H1CaloTrigger H1Clusters H1Cuts H1ElecCalibration + Killer. H1Examples \$2 H1Filler H1Finder H1Geom ~ H1HadronicCalibration H1Hat H1HatFiller H1HfsFinder H1JetFinder (H1Macros.) H1Mods H1MuonFinder H1NonepBgFinder H100Banks -H1Ods -H1PartEmFinder H1PhysUtils H1Pointers H1QCDFunc / - × 3 H1Red <-H1SVFit H1Selection H1Skeleton H1SoftLeptonid H1Steering H1SubDetInfo H1Tools -H1Tracks < H1TrkFinder H1UserCim H1UserDstar - x2 H1UserFtt 4- ×2 H1UserLifetime -+ Marfiell H1Wrappers \rightarrow oo_tools #share

************ ************ ++h1oo binaries ************* ************ AnalysisExample AnalysisExampleExtraction AnalysisExamplePlots H1Bos2oop H1Makeptr Lt2Root MakeInputTable TestQCDFunc batchAnalysis boosted jets checkcim cintsteering clusters ods copyMyEvents create eventlist dbaccess deleteJobs dst2all dst2ods dstar mods empz_hat h1red h1root jpsi_mods kaonfind ods 11te_hat lumicalc mergeAnalysis mymkcim ods2modshat oolist oolumi comclumi 0000000 oosubset read dstartree read_eventlist read_ods read_usertree rerun_finder rerun rec resubChains snapshot steermanage test_binning write eventlist

************* 74 ************** libH1AnalysisExample.so

libH1Benchmarks.so

libH1CalcPointers.so

libH1CalcWeights.so

libH1Calculator.so

libH1CaloTrigger.so

libH1ElecCalibration.so

libH1Filler_odsonly.so

IbH1HadronicCalibration.so

libH1Clusters.so

libH1Cuts.so

libH1Filler.so

libH1Finder.so

IbH1Geom.so

libH1HatFiller.so

libH1HfsFinder.so

libH1JetFinder.so

libH1Mods.so

libH1Ods.so

libH1Red.so

libH1MagfieldOO.so

libH1MuonFinder.so

libH100Banks.so

libH1PhysUtils.so

IbH1Pointers.so

libH1QCDFunc.so

libH1RedLook.so

libH1Red bos.so

libH1Selection.so

libH1Skeleton.so

libH1Steering.so

libH1Tools.so

libH1Tracks.so

libH1TrkFinder.so

libH1UserCim.so

libH1UserFtt.so

libH1UserDstar.so

libH1UserDstar_fill.so

libH1UserFtt Filler.so

libH1UserLifetime.so

libH1UserTiming_fill.so

libH1Wrappers_bos.so

libH1Wrappers_fastjet.so

libH1Wrappers_geom.so

libH1UserTiming.so

libH1SubDetInfo.so

libH1SoftLeptonId.so

libH1SoftLeptonId_Impl...so

libH1SVFit.so

libH1NonepBgFinder.so

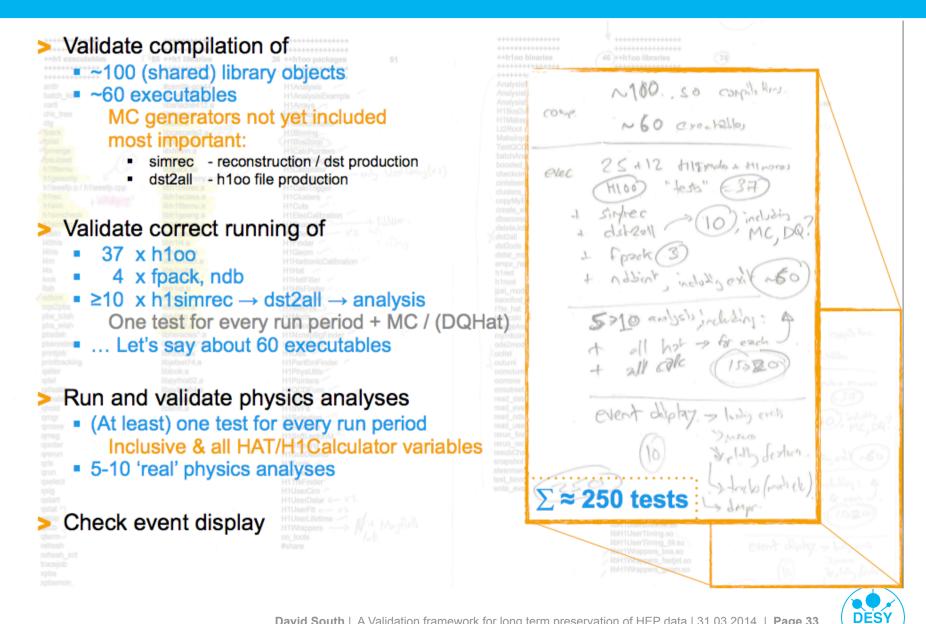
libH1PartEmFinder.so

IbH1Hat.so

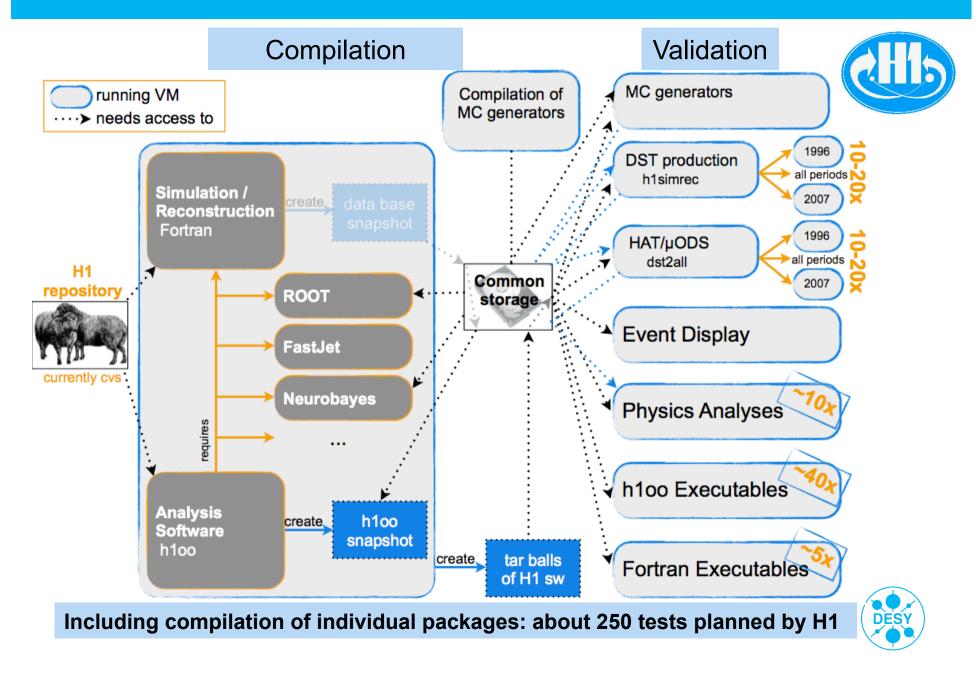
libH1Analysis.so

libH1Arrays.so

IbH1Binning so

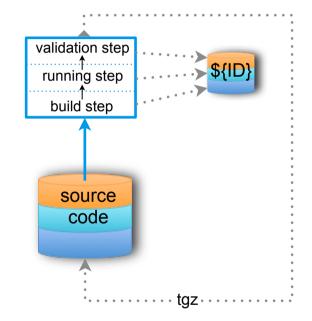

46 ++h1oo libraries

libH1Wrappers_lumi.so libH1Wrappers_ndb.so libH1Wrappers_neurobayes.so libSISConePluginOO.so libUser.so > child libbosutil.so libcemlibOO.so libfastietOO.so libfortran.so libfortranpatchOO.so libfortranshared.so libfortranstat.a libfpackOO.so libh1ndbOO.so libh1recOO so libmdbdummy.so libneurobayesOO.so libsisconeOO.so libutildummy.so N180. SO COMPLERING NGO areabillos 25+12 tillspude + Minores Olec HIDO) "tests" (E37) >(10) individo Samec ds1-201 MC, DR Forack (3 meloting exit ~60 5>10 maliel including: A -> for each -15320 event dipty -> have and 1.11 Section


DESY

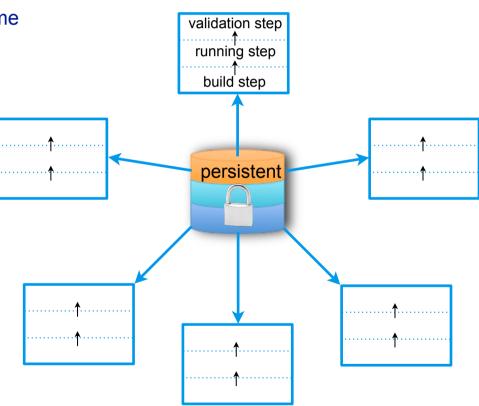
David South | A Validation framework for long term preservation of HEP data | 31.03.2014 | Page 32

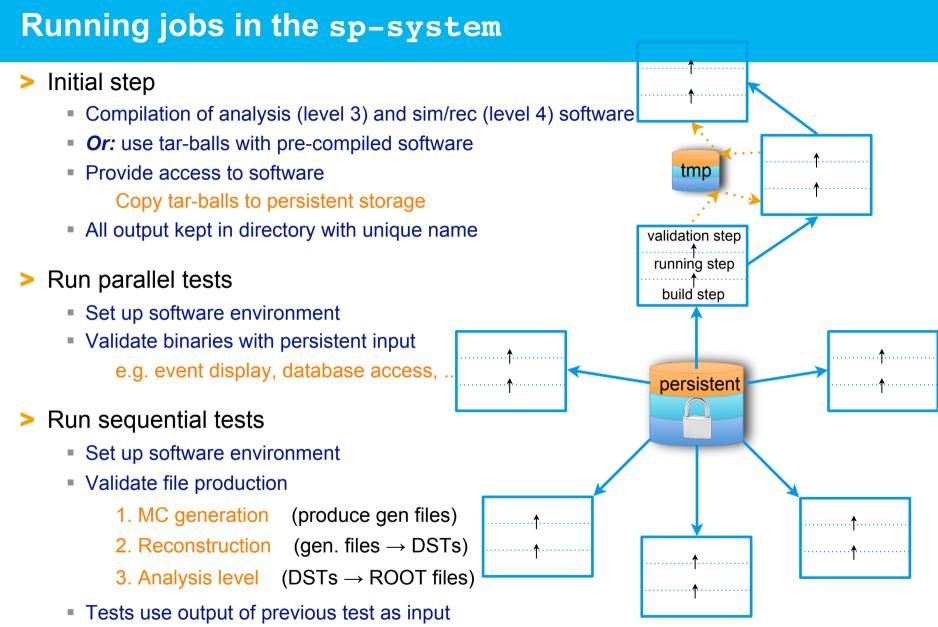
First sketch of H1 tests



Example structure of experimental tests: H1 (Level 4)

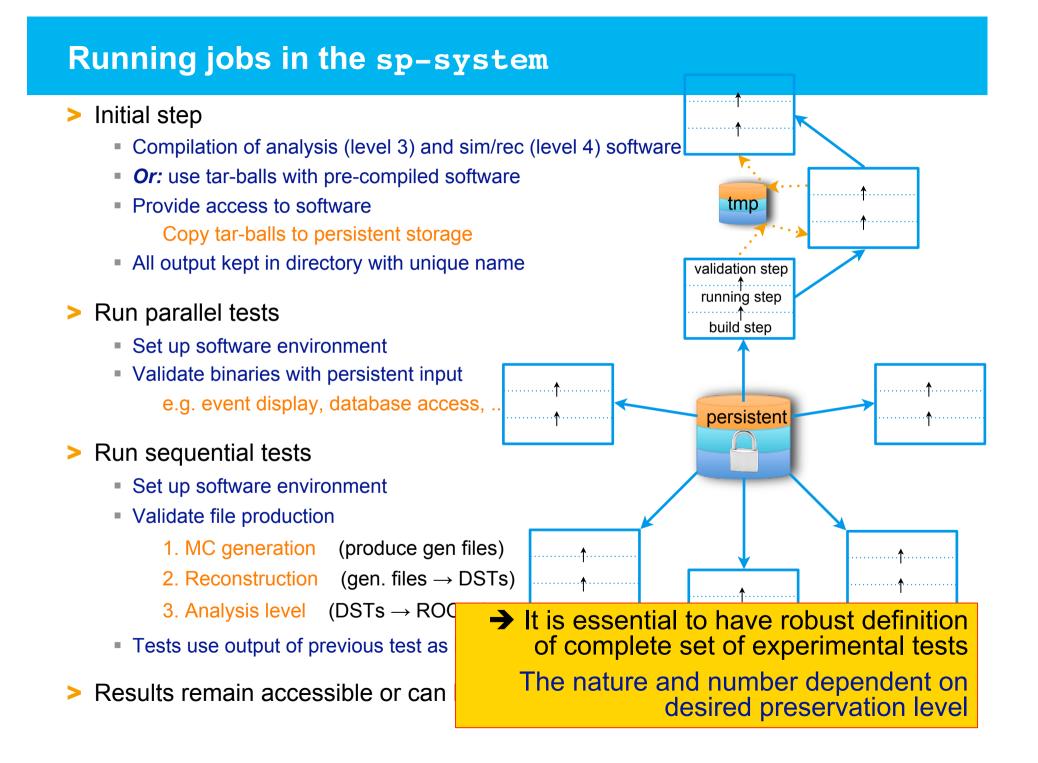
Running jobs in the sp-system

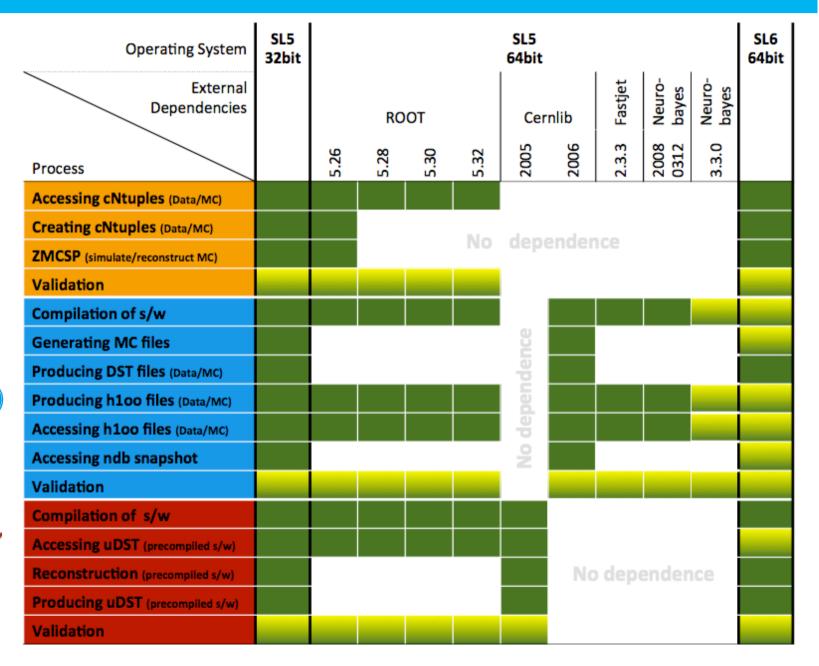

- Initial step
 - Compilation of analysis (level 3) and sim/rec (level 4) software
 - Or: use tar-balls with pre-compiled software
 - Provide access to software
 - Copy tar-balls to persistent storage
 - All output kept in directory with unique name



Running jobs in the sp-system

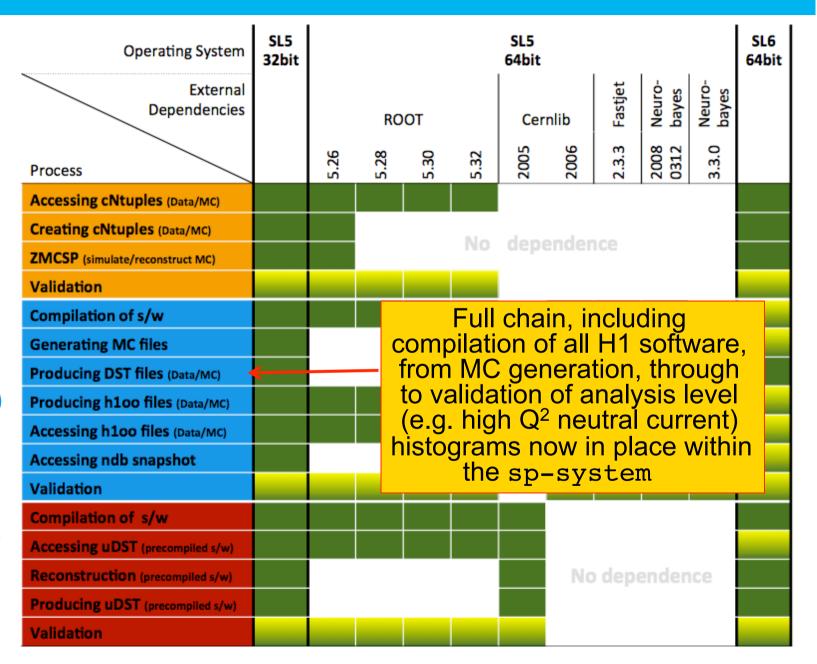
- Initial step
 - Compilation of analysis (level 3) and sim/rec (level 4) software
 - Or: use tar-balls with pre-compiled software
 - Provide access to software
 - Copy tar-balls to persistent storage
 - All output kept in directory with unique name
- Run parallel tests
 - Set up software environment
 - Validate binaries with persistent input
 e.g. event display, database access, .



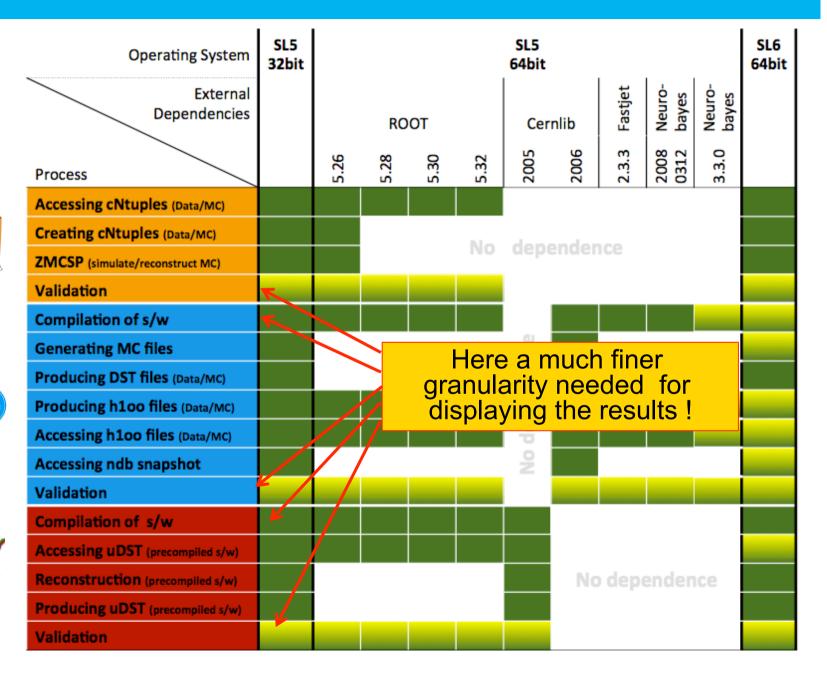


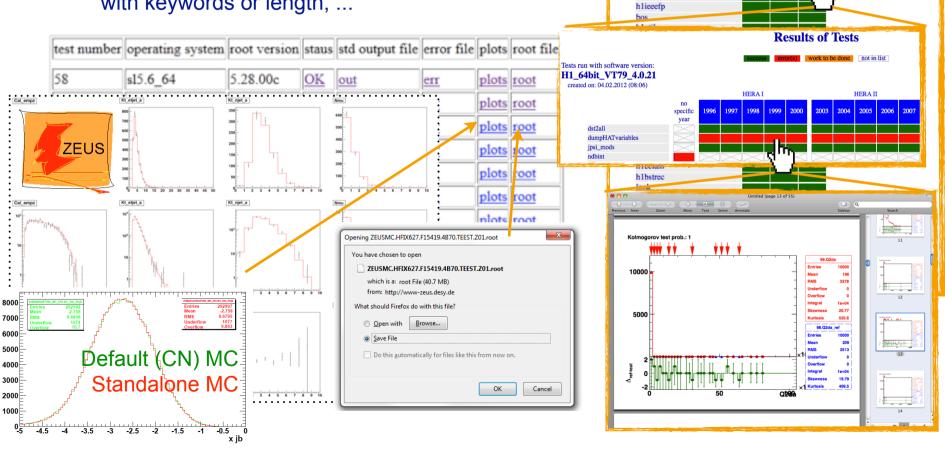
> Results remain accessible or can be reproduced with identical results

Putting it all together



Putting it all together




Putting it all together

ZEUS

Digesting the validation results

- Display the results of the validation in a comprehensible way: web based interface
- The test determines the nature of the results
 - Could be simple yes/no, plots, ROOT files, text-files with keywords or length, ...

H1 Validation Results

List of available validation runs:

<u>H1_64bit_VT79_4.0.21</u>
Description of used software version:
 H1_64bit_VT79_4.0.21

cernlibs

fastjet neurobayes h1unix not in list

Deployment

- The whole point of the sp-system is not to provide a future resource for the experiments, but rather to provide a recipe which can be deployed
 - At DESY, this means for example exploring alternative resources such as the local BIRD cluster, the National Analysis Facility (dedicated to LHC, unlikely) or the Grid

Current status and future of the project

- In total more than 300 runs over sets of pre-defined tests have been performed within the sp-system by the HERA experiments
 - The experiments are in the process of migrating to SL6/64bit, and tests performed so far have already identified and helped to solve several long-standing bugs
 - The next challenges include Scientific Linux 7 compatibility issues with ROOT 6
- The process of defining and implementing the complete set of validation tests for the whole chain of software to be preserved is still on-going and is expected to take another year
 - Crucial period, future analysis of data from HERA dependent on long term access
- The concept of the sp-system at DESY is applicable to other HEP experiments, including those at the LHC
 - Additionally, the sp-system is also able to host validation initiatives from other experiments and the light structure allows migration of current tests into it

Summary

- DPHEP is established in the field of high energy physics for matters concerned with data preservation
 - Group is now in transition to a new Collaboration structure, first signatories in 2013
 - Many successful cross-experimental projects
- Future analysis of HEP data relies not only on reliable, long term data access but also on keeping the software and environment alive
 - We believe employing migration and in-depth validation provides greater longevity compared to basic virtualisation solutions – although virtualisation is still a crucial tool!
 - This includes compilation and examines all facets of the experiment software stack
- The solution offered, which uses virtualisation as a tool to provide a coherent, multi-versioned environment, is applicable to other HEP experiments and other scientific fields
 arXiv:1310,7814

