

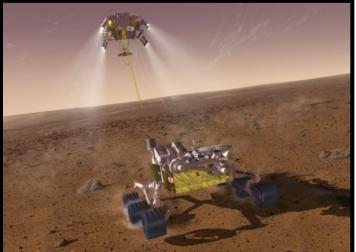
Jet Propulsion Laboratory California Institute of Technology Pasadena, California

PDS: A Model-Driven Planetary Science Data Architecture for Long-Term Preservation

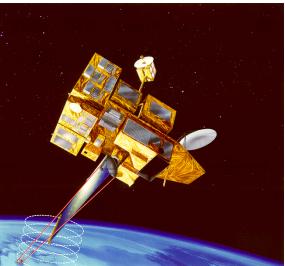
LOPS@ICDE 2014

J. S. Hughes, D. Crichton, S. Hardman, E. Law, R. Joyner, P. Ramirez

Jet Propulsion Laboratory California Institute of Technology Pasadena, California



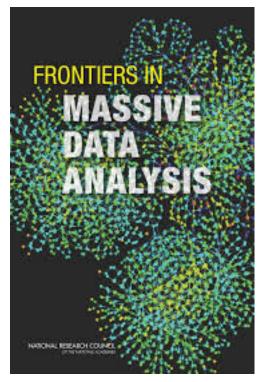
- Big Data in the Space Sciences
- The Planetary Data System
- PDS4: The Next Generation PDS
- The PDS4 Information Model
- The PDS4 System Architecture
- Recommendations


Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Observational Science Platforms

?

What do these have In common?


What's being observed

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

NRC Report: Frontiers in the Analysis of Massive Data

- Chartered in 2010 by the National Research Council
- Chaired by Michael Jordan, Berkeley, AMP Lab (Algorithms, Machines, People)
- Consideration of the architecture for big data management and analysis
- Importance of systematizing the analysis of data
- Need for end-to-end lifecycle: from point of capture to analysis
- Integration of multiple discipline experts
- Application of novel statistical and machine learning approaches for data discovery

2013

- A Major Shift from Compute-Intensive to Data-Intensive -

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Technology Trends*

- Distributed systems (access, federation, linking, etc)
- Scalable infrastructures and technologies for optimizing compute and data-intensive applications
- Service-oriented architectures
- Ontologies, models and information representation
- Scalable database systems with different underlying models
- Federated data security mechanisms
- Technologies for moving large data sets
- * Frontiers in Massive Data Analysis (2013)

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

A Disciplined, Architectural Approach

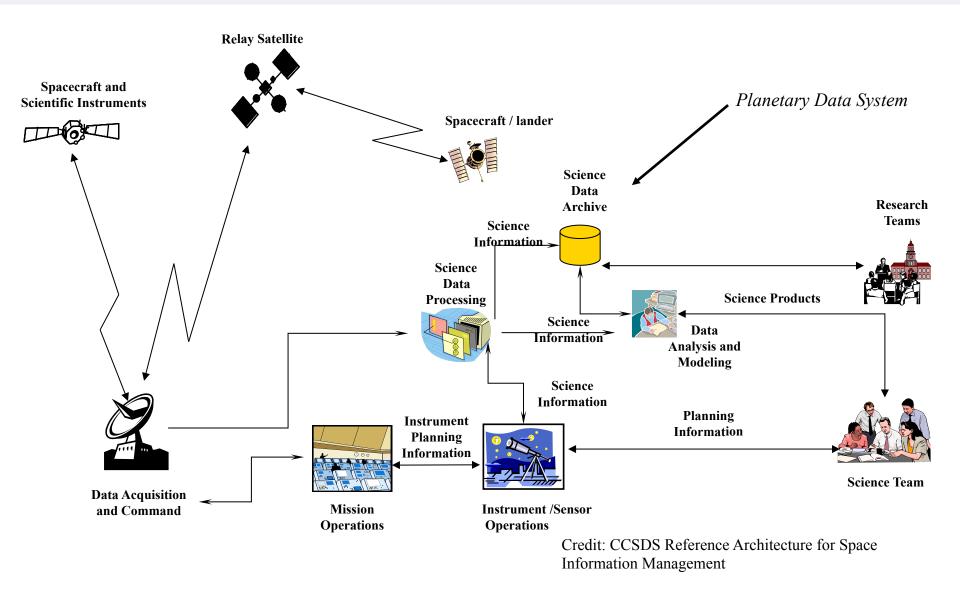
- Consider the architectural (information, software) viewpoint
 - Address the data definition and lifecycle from point of collection to data integration and analysis
 - Separate the technical infrastructure from the data to drive an overall data architecture on top of a scalable, big data infrastructure
 - Apply advanced computer science techniques to address data access, discovery, integration, and extraction across highly distributed environments to support data analytics
- Adapt, adopt, develop and research techniques and technologies for increasing the efficiency of data analysis for distributed environments
 - Reduce time to perform analytics by distributing the computation
 - Develop mechanisms for comparing measurements against predictive models
 - Manage the balance between sampling strategies and uncertainty in inferences

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Challenges in Space Data Systems

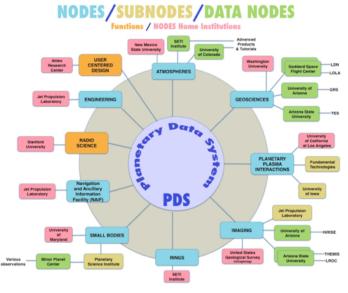
- Space systems and instruments are deployed world-wide; data is generated across complex, multi-organizational systems
 - Many producers of data
 - Data is managed in highly distributed environments
 - Limited data sharing occurring between organizations

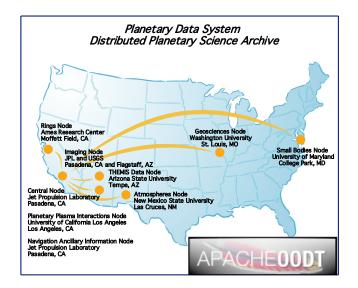
Systems are very heterogeneous


- Data systems are often developed around the point of collection
- Access to data has traditionally been difficult
- Data is represented in different formats and structures
- Massive data sets are being generated challenging traditional analysis approaches

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

The Planetary Data System


8



Jet Propulsion Laboratory California Institute of Technology Pasadena, California

NASA Planetary Data System: The Planetary Science Archive

- <u>Purpose:</u> to collect, archive and make accessible digital data and documentation produced from NASA's exploration of the solar system
- <u>Infrastructure</u>: a highly distributed infrastructure with planetary science data repositories implemented at major government labs and academic institutions
 - All data is captured based on a common set of data standards (models, structures, etc)
 - Approximately 600 TBs of data
 - Movement towards international interoperability
 - Implemented an open source cyerinfrastructure developed at JPL (Apache OODT)
 - Movement to an information-model driven architecture

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Timeline of PDS Technical Implementations and Upgrades

• PDS 1 - < 1990

- High-Level Catalog for finding data sets by mission, instrument, spacecraft and target.
- Archive volumes stored and distributed on tape.
- The Object Description Language (ODL) is invented for product labeling and capturing catalog information.

• PDS 2 - 1990

- CD-ROM becomes the archive and distribution volume of choice.
- High-Level Catalog simplified by using more text instead of keywords to capture descriptive information.

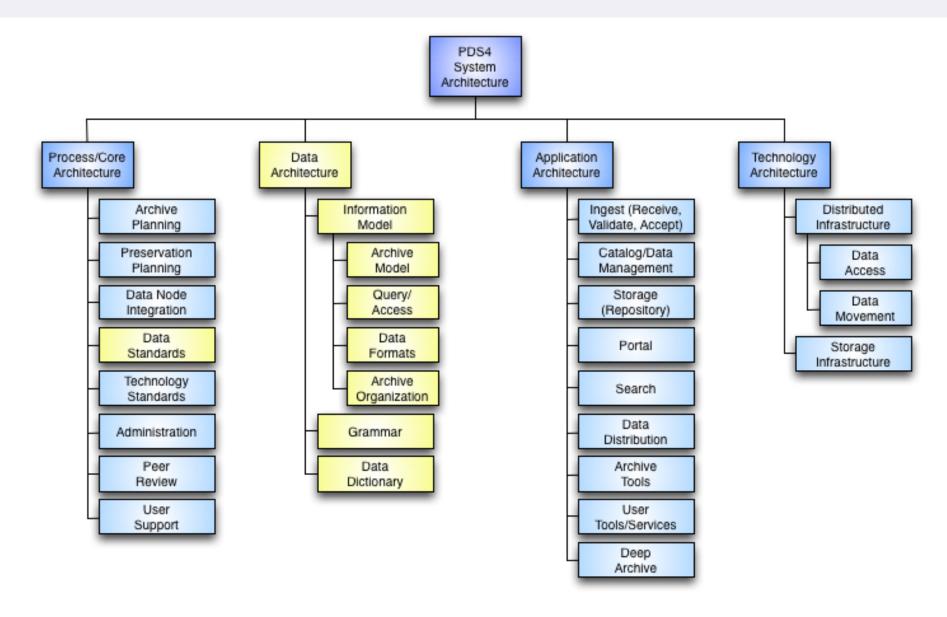
• PDS 3 - 1992

- PDS sets up and maintains a web presence.
- Movement to online distribution of products (PDS-D). (~2002)
- On-line mass storage and data bricks replace CD/DVD as archive and distribution media.

• PDS4 - 2010

- Movement to a distributed, service architecture
- Integrated federation
- New data standards, data formats and structures
- International Collaboration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California


PDS4: The Next Generation PDS

- The NASA Planetary Data System (PDS) after about 20 years of operations is developing PDS4, a major revision and transition to a modern system based on best practices for data system development.
 - A single information model
- PDS4 will have fewer, simpler, and more rigorously defined formats for science data products.
- PDS4 will use XML, a well-supported international standard, for data product labeling, validation, and searching.
- PDS4 incorporates a hierarchy of data dictionaries built to the ISO/IEC 11179 standard.

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

PDS4 Architecture

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

The PDS4 Information Model

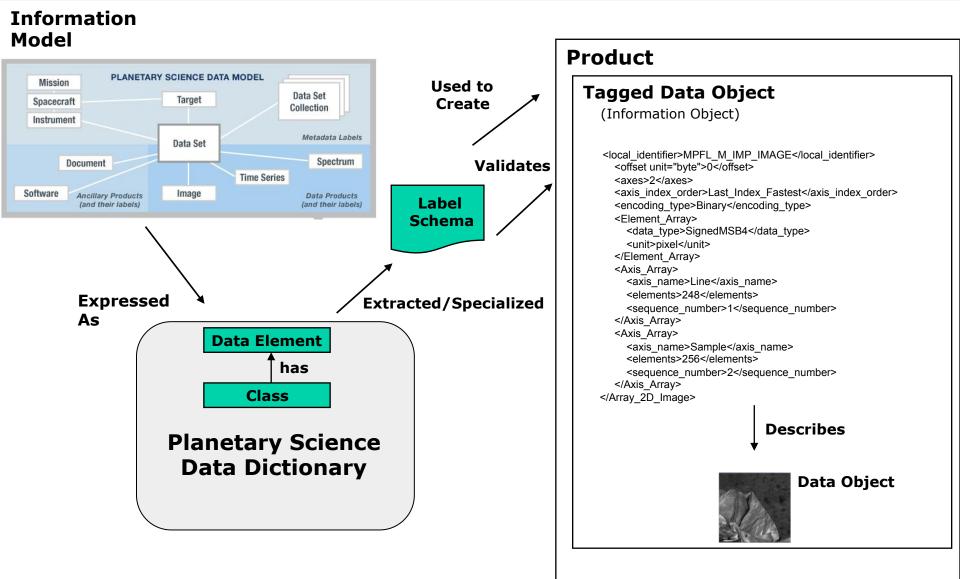
- Defines the data structure (format)
- Defines the science interpretation of the data
- Defines the context within which the data was captured, processed, and archived
- Defines the relationships between the data

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

The Design Principles of the Information Model

- The information model should remain independent of its implementation.
 - Disentangles the model from the implementation
 - Information model evolves independent of information technology
- A changing domain suggests that the information model should drive both the development and management of the information system.
- The modeling language should be semantically richer than the other languages in the framework.

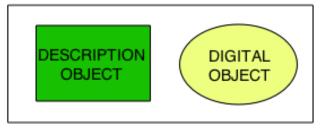
Jet Propulsion Laboratory California Institute of Technology Pasadena, California

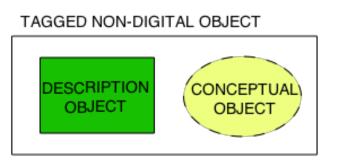

Knowledge Acquisition for the Information Model

- Domain expertise is captured in an ontology.
 - A working group was formed with at least one domain expert from each of the science disciplines.
 - Each thing-of-interest in the domain was defined and then related to other things-of-interest.
 - The resulting model represents the consensus of domain experts across the PDS science and engineering disciplines.
- The model is subsequently used as the single authoritative source for the PDS4 Data Standards.

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

The Primary Role of the Information Model

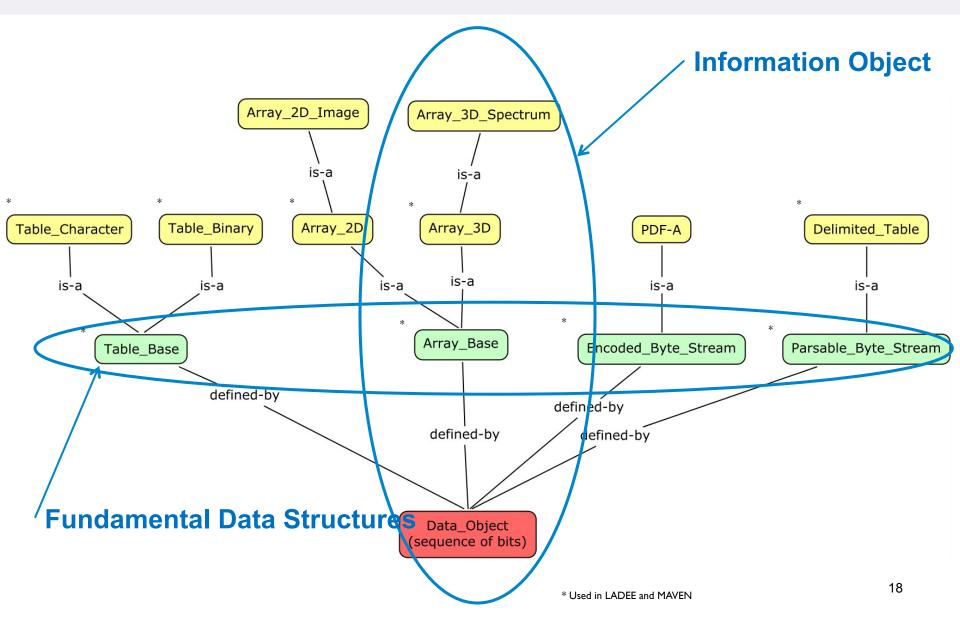



Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Information Object Model ¹

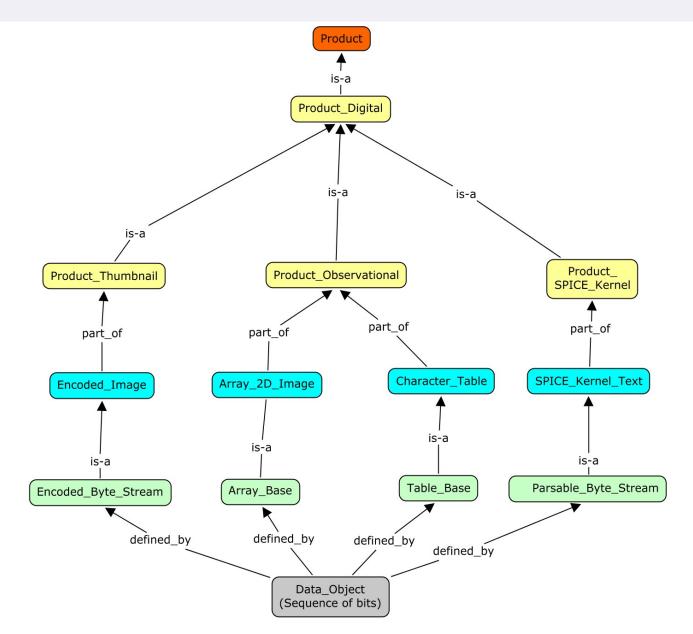
TAGGED DIGITAL OBJECT

- DESCRIPTION OBJECT PHYSICAL OBJECT
- digital object: An object which is real data — for example, a binary image of a redwood tree.
- physical object: An object which is physical or tangible – for example the planet Saturn and the Venus Express magnetometer.


 conceptual object: An object which is intangible – for example the Cassini mission and NASA's strategic plan for solar system exploration.

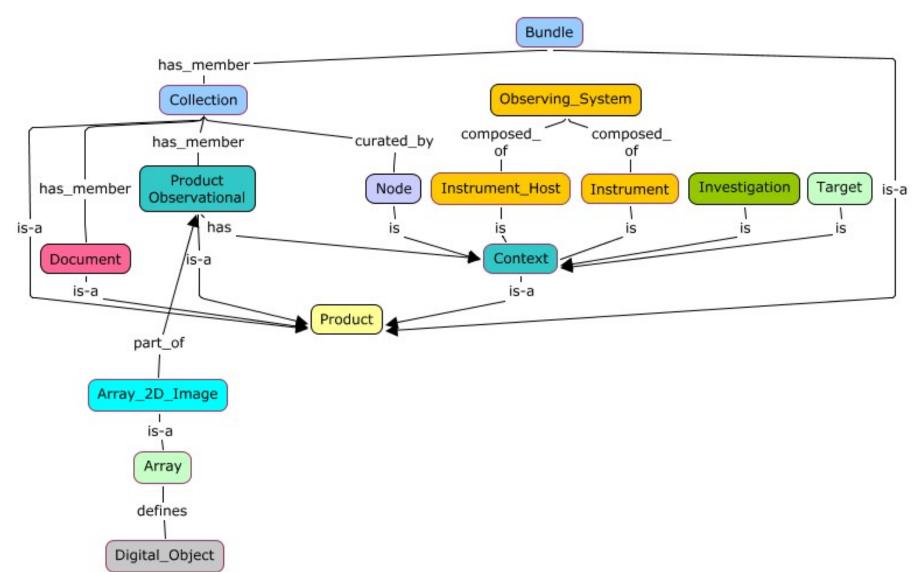
¹ Open Archival Information System (OAIS) Reference Model - ISO 14721:2003

Jet Propulsion Laboratory California Institute of Technology Pasadena, California


PDS4 Data Formats

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

PDS4 Product Model

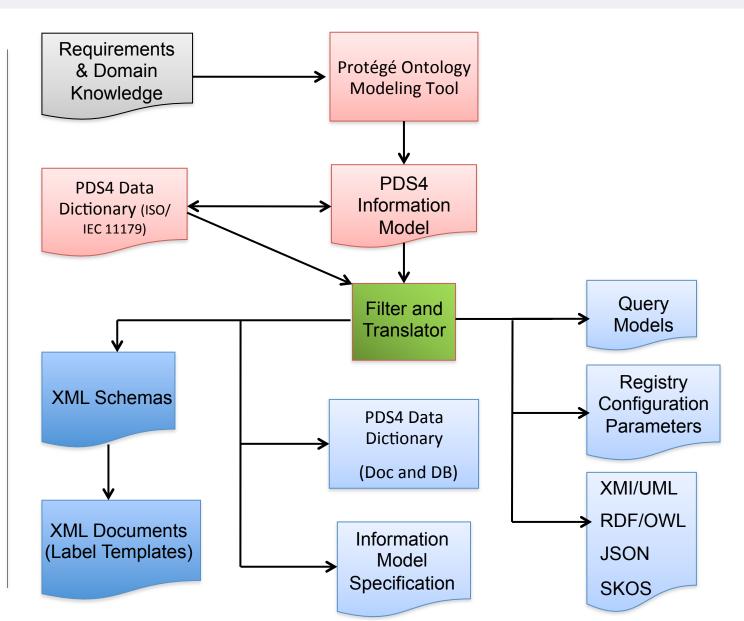


19

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

PDS4 Information Model Concept Map

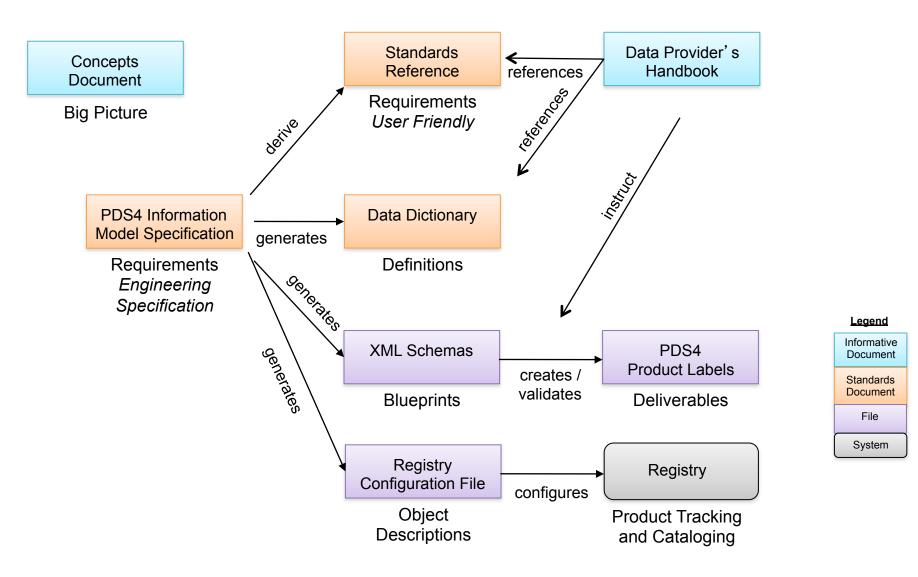
Jet Propulsion Laboratory California Institute of Technology Pasadena, California


The Information Model Driven Process

- The model is updated frequently to reflect design decisions.

> *Using Protégé as a modeling tool*

- The operational files and supporting documents are regenerated for use and testing.


- The current version of the model and the generated artifacts as a whole are an implementationready set of data standards.

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

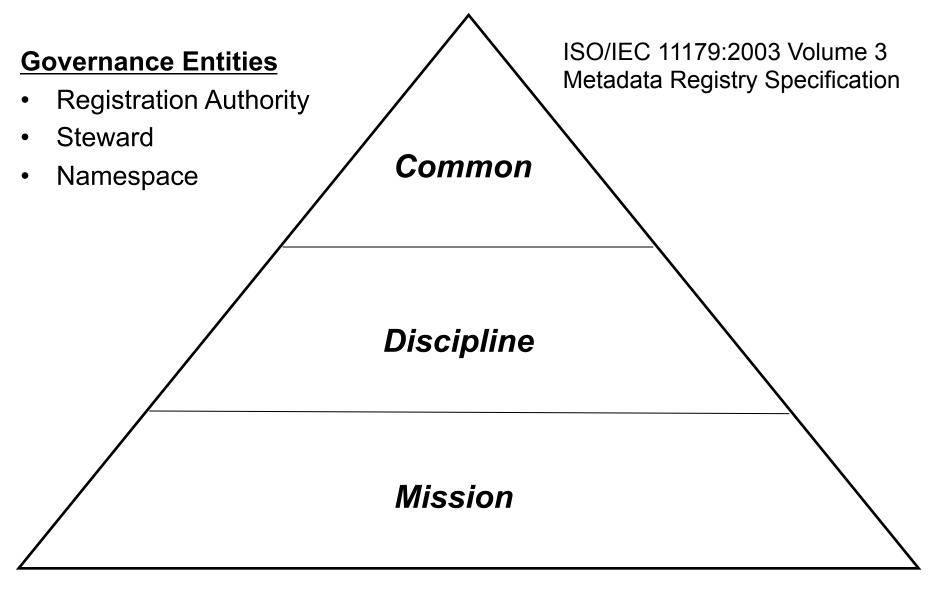
PDS4 Documents, Artifacts, and their Relationships

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Product Label Template

Identification_Area Logical_Identifier Version_Id	
Observation_Area Time_Coordinates Primary_Result_Summary Investigation_Area Observing_System Target_Identification	Discipline_Area Mission Area
Reference_List Internal_Reference External_Reference	
File_Area_Observational File Header Array_2D_Image	

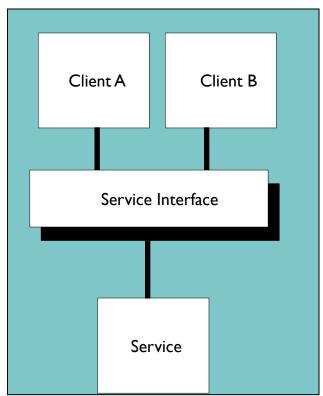
Jet Propulsion Laboratory California Institute of Technology Pasadena, California

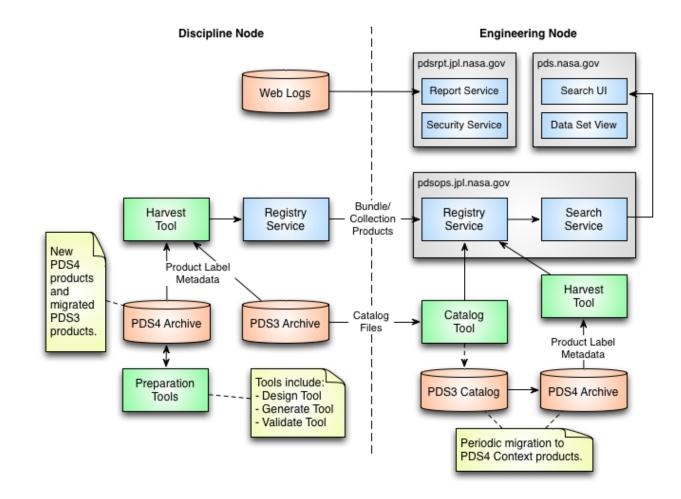

Industry Standards* Referenced and Controlling

- ISO 14721:2003 Open Archival Information System (OAIS) Reference Model - Provides a standard for information objects.
- ISO/IEC 11179:3 Registry Metamodel and Basic Attributes specification
 Adopted for the data dictionary schema.
- Reference Architecture for Space Information Management (RASIM) -CCSDS 312-0.G-1 – Provides the overarching architectural principles.
- W3C XML (Extensible Markup Language) Rules for encoding documents electronically.
- W3C XML schema Type description language for XML documents.
- Electronic Business XML (ebXML) federated registry/repository information model – Provides a standard to support federated registry/ repository functions
- RDF/RDFS/XML RDF is a standard model for data interchange on the Web.

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Data Dictionary Governance




Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Based on a distributed information services architecture (aka SOA-style)

- Allow for common and node specific network-based services.
- Allow for integrating with other international systems
- System includes services, tools and applications
- Use of online registries across the PDS to track and share information about PDS holdings
- Implement distributed services that bring PDS forward into the online era of running a national data system
- Use and contribute back to open source (e.g., Apache OODT, Apache SOLR, Apache Tika, etc)

PDS Deployment

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

OODT: An Open Source Framework for Building Data Intensive Science Systems

Catalogs, archives, metadata, & more

Data grid framework for transparent search and discovery of disparate science resources

- An open source data management framework to support science data system implementation
 - Developed at NASA/JPL
 - Top Level Project at the Apache Software Foundation (2011)
 - Used across multiple centers (JPL, GSFC, Langley)
 - Used across multiple agencies (NASA, NIH, NSF, DARPA, NOAA)
 - Integrates with an information architecture (e.g., earth science, biomedicine, etc)
 - Significantly reduces cost and increases performance of science data processing and management systems
- Applied to multiple Earth Science missions
 - Seawinds, OCO-2, SMAP, NPP Sounder Peate, JPSS
 - CARVE, Airborne Snow Observatory
- Applied to Earth science, planetary science, astronomy, biomedicine, defense

http://oodt.apache.org

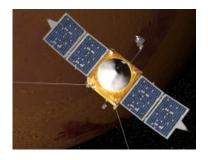
Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Internationalization of Massive Planetary Science Data: Architecture and Standards

Planetary Data

from around the world from the solar system from beyond accessible, usable, standardized

What will you discover next?



InSight (NASA)

BepiColumbo (ESA/JAXA)

Planetary Data System Version 4 International, distributed, model-driven data architecture for capturing, managing and distributing planetary science data results to the world-wide science community.* 2000: 4 TBs; 2014: 720 TBs

MAVEN (NASA)

Osiris-REx (NASA)

LADEE (NASA)

ExoMars (ESA)

* Endorsed by the **International Planetary Data Alliance** in July 2012 – https://planetarydata.org/documents/steering-committee/ipda-endorsements-recommendations-and-actions

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Some Features

Data Reuse

- Designed a few simple formats for 80% of the data
- All things are formally defined once
- Everything that is registered as a product
- Multi-level governance

Model Driven

- Model evolves with changes in the science discipline
- Implementation technologies evolve at their own speed.
- Improves interoperability at the information level

Subsumes legacy archive

- Proxy labels exist for each legacy product
- High value data sets are migrated as needed

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Recommendations

- Invest in capturing and maintaining data in well-annotated, accessible, structured data repositories
 - Based on rigorous data/information architectures
- Computer Scientists, Statisticians/Data Scientists, Domain Experts (Scientists) must systematize the analysis of massive data
 - Significant efficiencies may be achieved by thinking of data analysis and data access together rather than thinking of them as serial operations.
 - We need new statistical methods and algorithms optimized for this type of environment.
- Develop computing infrastructures for sharing and analyzing highly distributed, heterogeneous data
 - This requires coordination (international, cross-agency)
 - It requires a software architecture
- Sustainability in both the data and the software infrastructures are critical
 - Although they can be on different evolutionary paths

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Acknowledgements*

Ed Bell **Richard Chen** Dan Crichton Amy Culver Patty Garcia Ed Grayzeck Ed Guinness Mitch Gordon Sean Hardman Lyle Huber **Steve Hughes Chris Isbell** Steve Joy **Ronald Joyner**

David Heather Debra Kazden Santa Martinez Todd King Joe Mafi Mike Martin Peter Allan Stephanie McLaughlinMichel Gangloff Thomas Roatsch **Thomas Morgan** Alain Sarkissian Lynn Neakrase Paul Ramirez Anne Raugh Mark Rose Elizabeth Rye Boris Semenov **Dick Simpson** Susie Slavney

Anyone who sat through a DDWG 2-hour telecon or provided useful input.

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Thank You

Questions and Answers

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

