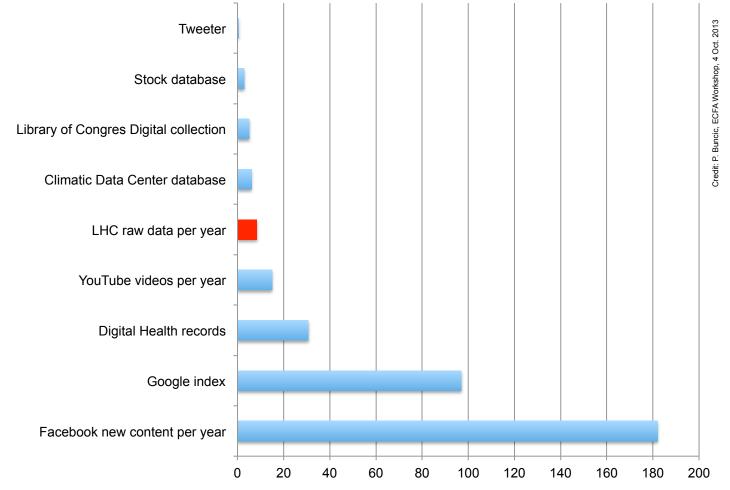

Scientific Data Preservation

C. Diaconu

Centre de Physique des Particules de Marseille CPPM/IN2P3/CNRS



Data Big Bang

Data collection accellerates

PB

Digital data are fragile

- Storage capacity is physically exceeded
- > Unattended/orpahned data vanishes quickly

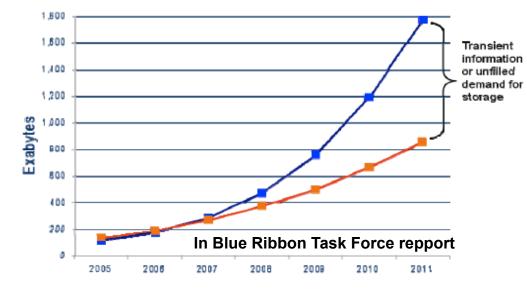


FIGURE 1.3: Information and Storage Source: J. Gantz January 2008 (revised). Used with permission.

Models of data preservation and acces

- Collaborations address this issue in a generic way
 - e.g. Blue Ribbon, APA, DPC, eSciDir, RDA ...

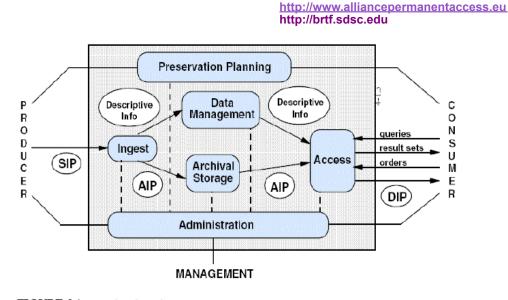
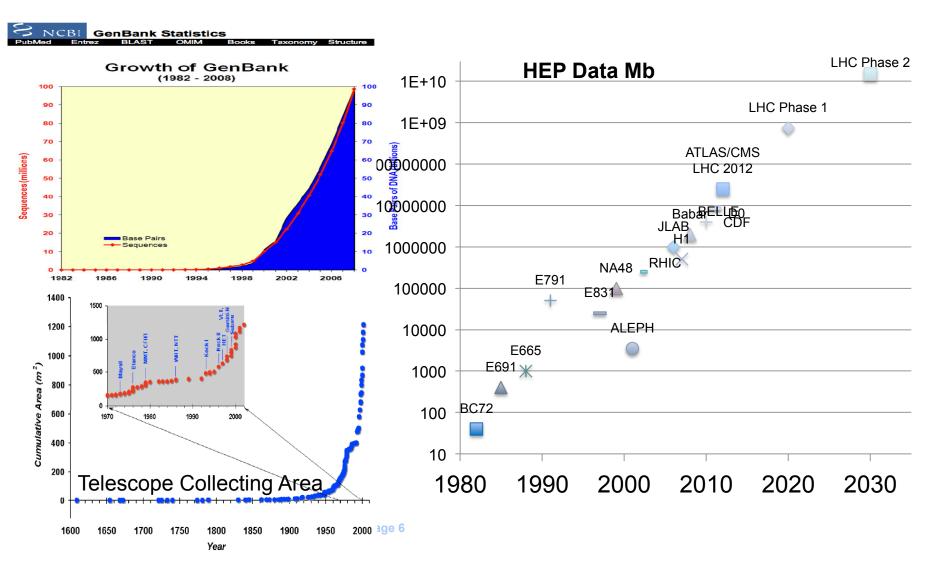



FIGURE 2.1: **The OAIS Reference Model** http://public.ccsds.org/publications/archive/650x0b1.pdf, Page 4-1. *Source: Consultative Committee for Space Data Systems January 2002.*

Scientific Data is a major component of the ongoing efforts (complexity)

Big Scientific Data

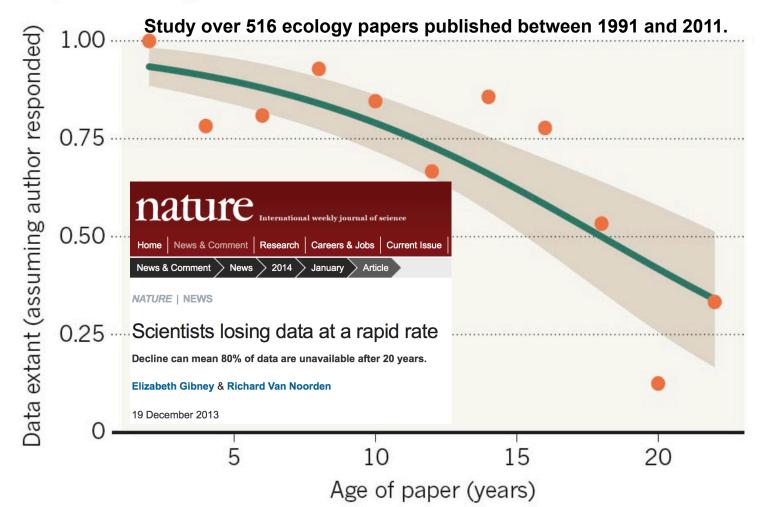
Scientific research observes a dramatic increase in data and are questioning the long term future of this data

Scientific Data

- Structured following a scientific plan
- > Diverse sources
- Large and expensive projects
 - Not easy to repeat
- > Contain unique knowledge
 - « Time stamped »
- > Data Observatories
 - Contain more information than initially needed

Scientific endeavours: big and complex

- > High energy physics projects
- Large Hadron Collider (27 Km, 13 TeV, 40MHz)
- > 100Pb/year


C. Diaconu | Scientific Data Preservation ICDE/LOPS 2014 | Page 8

Another project

Where is your data?

MISSING DATA

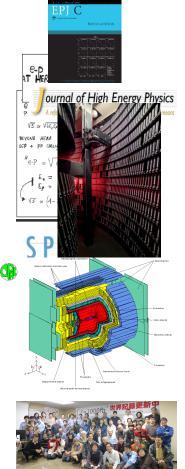
As research articles age, the odds of their raw data being extant drop dramatically.

Preservation: where is the problem?

NATURE | NEWS

عربي

LHC plans for open data future


Researchers share results to keep them accessible.

Elizabeth Gibney

26 November 2013

"When the LHC programme comes to an end, it will probably be the last data at this frontier for many years. We can't afford to lose it." Storing the data is not a problem: hard drives are cheap and getting cheaper. The challenge is preserving knowledge that is less commonly stored — the software, algorithms and reference plots specific to each experiment. These often degrade or disappear with time, says Cristinel Diaconu of the Marseilles Centre for Particle Physics in France, who is chair of the international Data Preservation in Long Term Analysis in High Energy Physics (DPHEP) study group. He worries that if the data continue to be stored in their current state, physicists trying to decipher them in 10 years' time will be unable to reconstruct the discovery of the Higgs boson. "When the LHC programme comes to an end, it will probably be the last data at this frontier for many years," he says. "We can't afford to lose it."

Scientific Data: what is it?

- > Publications
- Documentation >
- > Raw
- Donées Processées >
- > Meta-données
- > Workflows
- > Software

- Diffuse knowledge
-more...

0

echnol

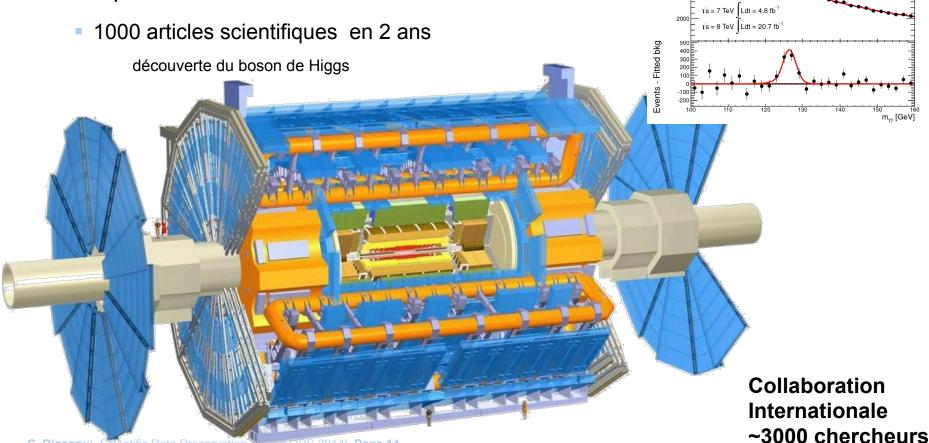
couts

Comple

Exemple: HEP experiments in ± 10 ans

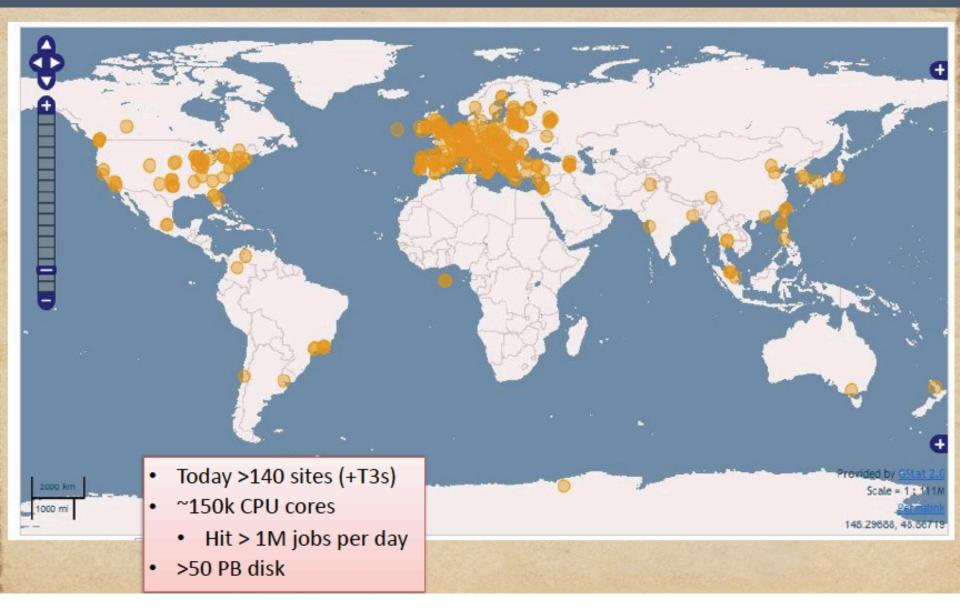
		20	000	20	10	today	2020
LHC	pp / ions	fb ⁻¹ ++					
LEP	ee	0.9 fb ⁻¹					
HERA	ер	0.5 fb ⁻¹				Les données son	t I
Tevatron	p p	10 fb ⁻¹				uniques!	
BaBar	ee	600 fb ⁻¹					
Belle	ee	1 ab ⁻¹ ++					
CLEO C	ee	0.9 fb ⁻¹					
BES III	ee	fb ⁻¹ ++					
KLOE	ee	1 fb ⁻¹ ++					
RHIC	pp / ions	Multi-exp					
SPS	Fixed target	Multi-exp					

[not all programmes, dates are approximate, just to give the picture]

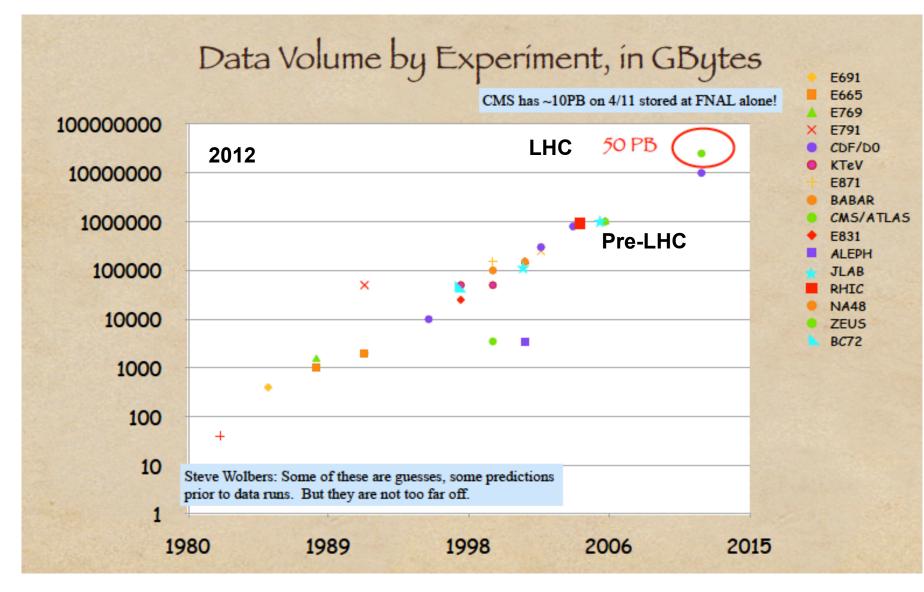

C. Diaconu | Scientific Data Preservation ICDE/LOPS 2014 | Page 13

Complex experiments

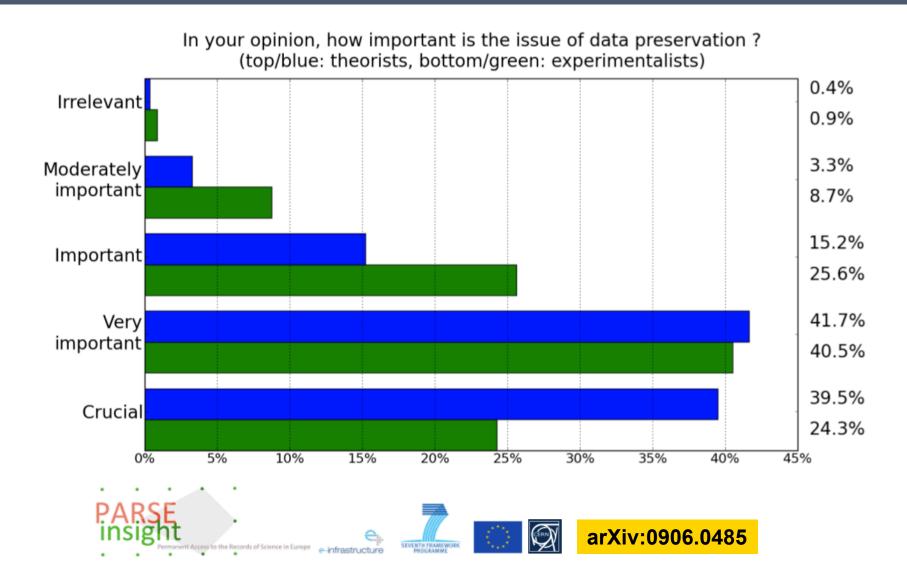
> ATLAS: L'équivalent d'une camera avec 25Gpixels (avec une cinquantaine de technologies différentes) et 40 000 000 000 « photos » par seconde (100Pb) Ge/ ATLAS Data 2011+2012 SM Higgs boson m_=126.8 GeV (fit) Events / 2

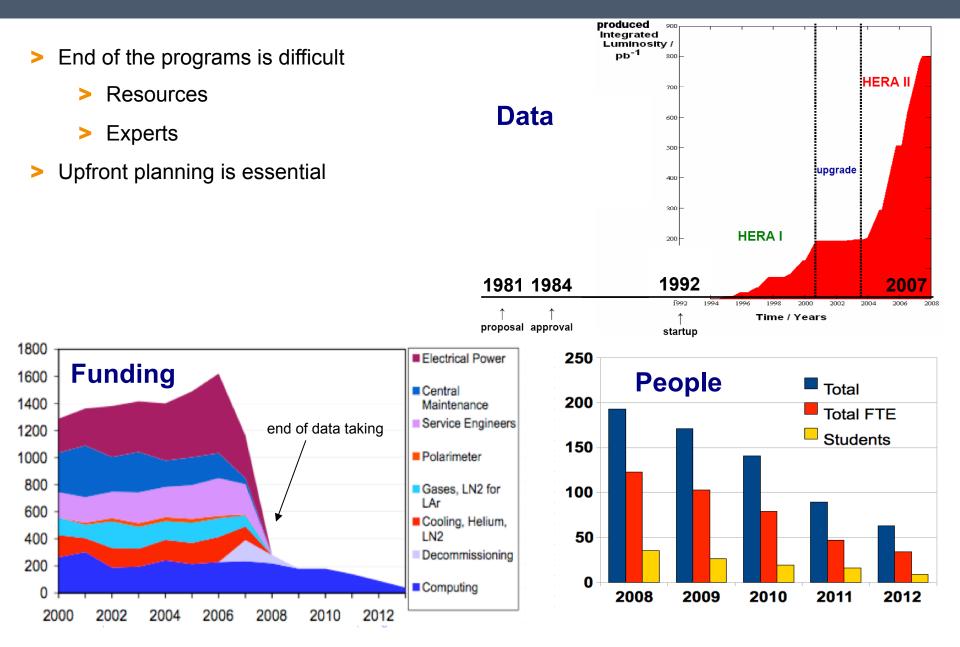

Bkg (4th order polynomial)

> manips LHC:



C. Diaconu | Scientific Data Preservation | 2014 Page 14


LHC computing


Data sets in time: 1PB -> 100PB->1EB

Should these data be preserved?

Why there may be a problem?

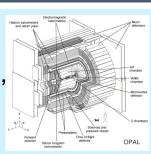
The email you may receive one day (I did)

Dear Dr. Diaconu,

- In the tape storage area we still have 4132 tapes of type 3840 containing HERA data.
- We do not have a functioning reading device anymore and the storage area was polluted recently, so it is likely that the tapes are damaged.
- Would you like us to send you these tapes or should **we destroy them directly?**

Yours Sincerely,

Tape admin. service [a large computing centre]



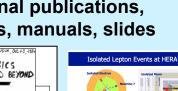
What is "data"?

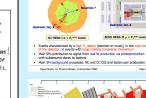
Digital information The data themselves, volume estimates for preservation data of the order of a few to 10 PB

Other digital sources such as databases to also be considered Software Simulation, reconstruction, analysis, user, in addition to any external dependencies

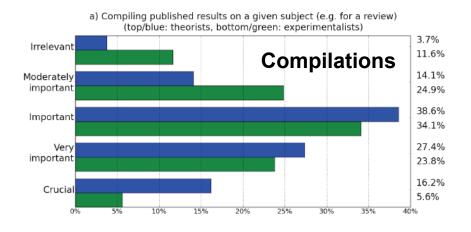
S ROOOT A Object-Oriented Data Analysis Framework Determined by the second s

Meta information Hyper-news, messages, wikis, user forums..

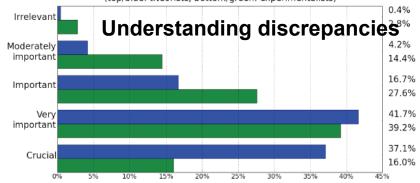

Publications arXiv.org


HEPDATA: REACTION DATA Database
 Loversin

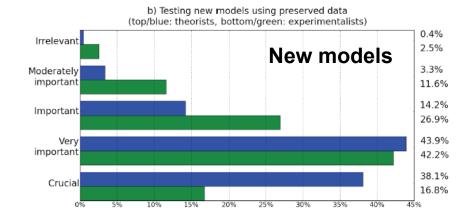
Documentation Internal publications, notes, manuals, slides

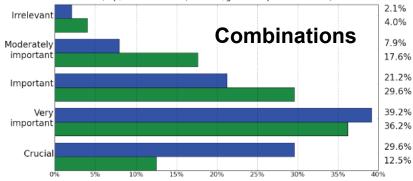


Expertise and people

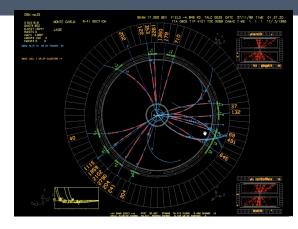


Data usage

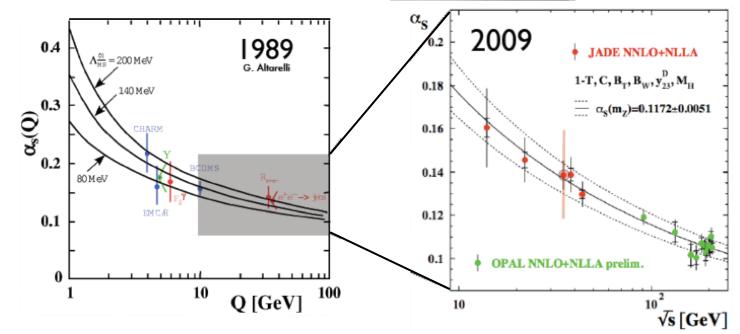

Preserving HEP data is important for:


 c) Showing compatibility of or detecting deviations between old and new experiments (top/blue: theorists, bottom/green: experimentalists)

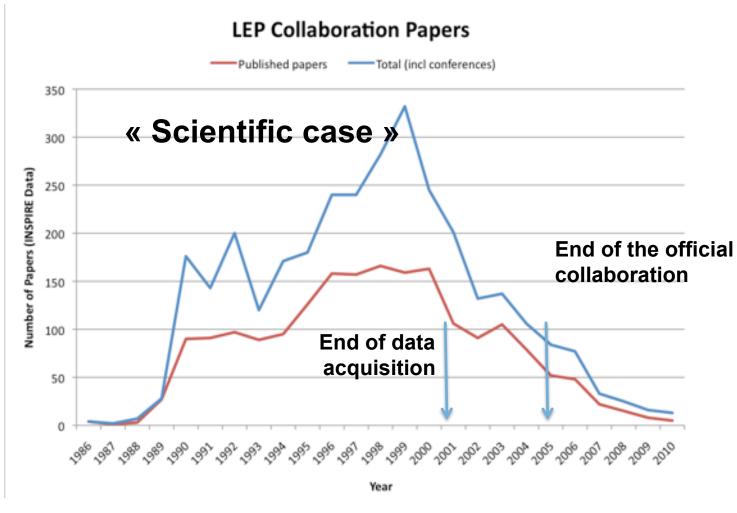
 d) Combining preserved data with new measurements (top/blue: theorists, bottom/green: experimentalists)


PARSE.Insight | Salvatore Mele | January 2009

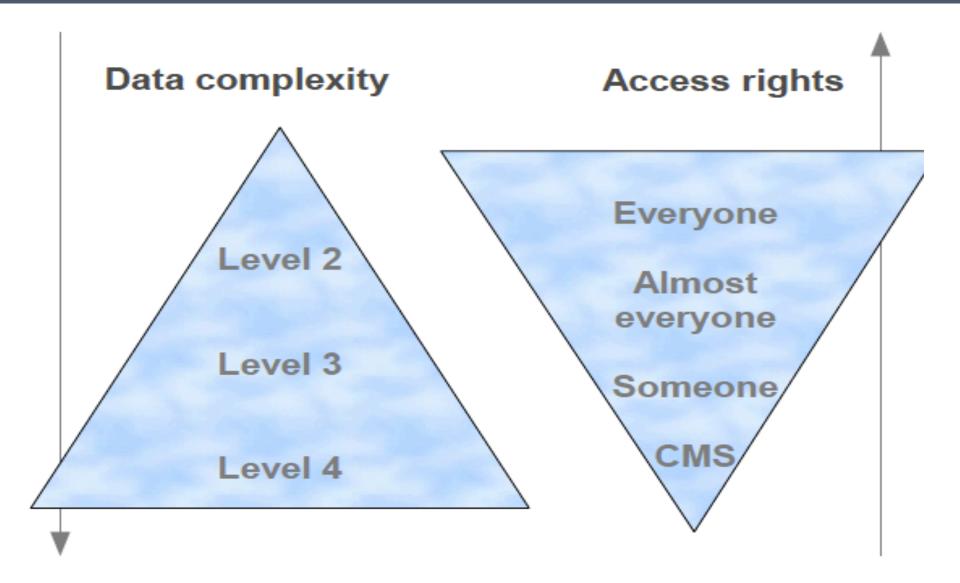
Rescued data used for fundamental results


> Experience JADE

- Données sauvées par hasard Nom de code: "la valise"
- Ré-anlayse après 20 ans



2011


10 publications

Long term publications yield

> Preserved data enables low cost science

Preservation complexity levels and access rights

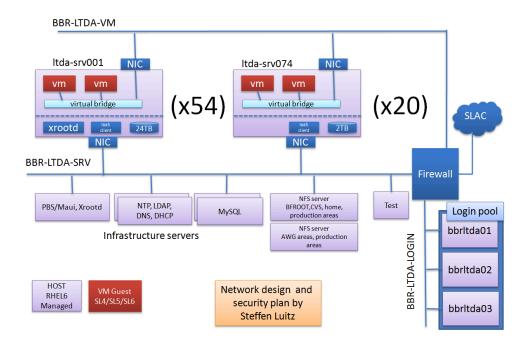
Level 1: Documentation

- > Une tache considérable: des groupes de travail dédiées
- Non-digital: Cataloguing, organisation, scanning or photographing of appropriate of papers, notes, drawings, talks from pre-web days, detector schematics, blueprints, logbooks, ...
 - Virtual Archives established by the experiments

- Digital: Old online shift tools, detector configuration files, electronic logbooks, detailed run information, web content from out-dated servers with dead links, various wikis, meetings, talks, ...
 - Replacement of old web servers by VMs, hosted by the computer centres
 - Replacement of old pages to newer technologies such as wikis (use of (T)wikis much more prevalent in the LHC era)
 - Use of external services for hosting collaboration material

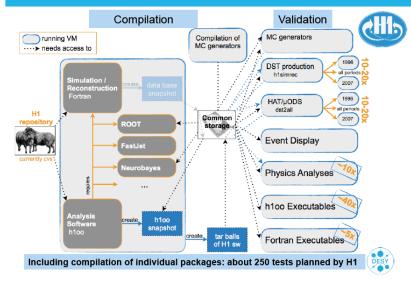
Documentation projects with INSPIRE

- Internal notes now available on INSPIRE
 - Password protected now, simple to make publicly available in the future


in SPIF	Welcome to INSPIRE INSPIRE is out of beta and ready to replace SP please email us at <u>feedback@inspirehep.net</u>		
	HEP "INST "HELP "SPIRES HEPNAMES	ZEUS Internal Notes	10 records found
ZEUS Intern Use "find " for SPIRES-style Ind m ZEUS-IN-10-004 This collection is restrict MEP :: Search :: Heig Provered by Invenig v1.00-rc0+ Problems/Questors to feed back@hispir Problems/Questors to feed back@hispir Last updated : 19 Oct 2011, 02:15	HEP INSPIRE INSPIRE INSPIRE IS out of beta please email us at teedback@inspirehep.ns HEP INST HELP S	 Inclusive-jet production in NC I J. Terron C. Glasman. ZEUS-IN-C <u>References</u> <u>BibTeX</u> <u>LaT</u> <u>Detailed record</u> - <u>Similar records</u> Three-subjet distributions in m E. Ron C. Glasman, J. Terron. ZI <u>References</u> <u>BibTeX</u> <u>LaT</u> <u>Detailed record</u> - <u>Similar records</u> 2009 Guide to Funnel: The ZEU A. Parenti. ZEUS-IN-09-002. <u>References</u> <u>BibTeX</u> <u>LaT</u> <u>Detailed record</u> - <u>Similar records</u> 4. Automated calculation of radia I. Marfin. ZEUS-IN-09-001. 	DIS with HERA II. 19-004. eX(US) LaTeX(EU) <u>Harvmac</u> <u>EndNote</u> eutral current deep inelastic scattering.
	Note: You can use your nickname or your email address to login.		
	HEP :: <u>Search</u> :: <u>Help</u> Powered by <u>Invenio</u> v1.0.0-rc0+ Problems/Questions to <u>teedback@inspirebep.net</u>		

- The ingestion of other documents is under discussion, including theses, preliminary results, conference talks and proceedings, paper drafts, ...
- More on InSpire: reduced data?

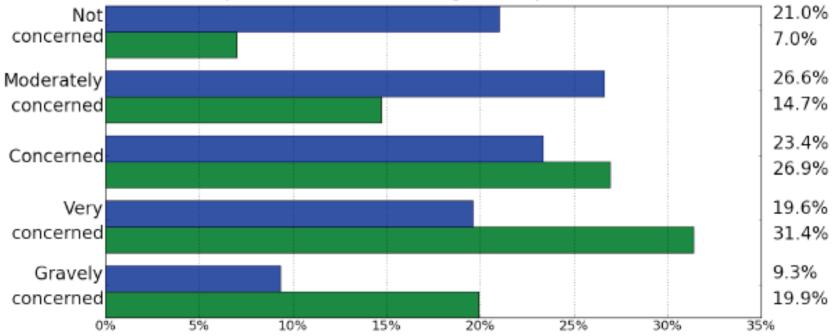
Exemples projets



Préservation d'un système d'accès et calcul à des données complexes (SLAC/Stanford USA)

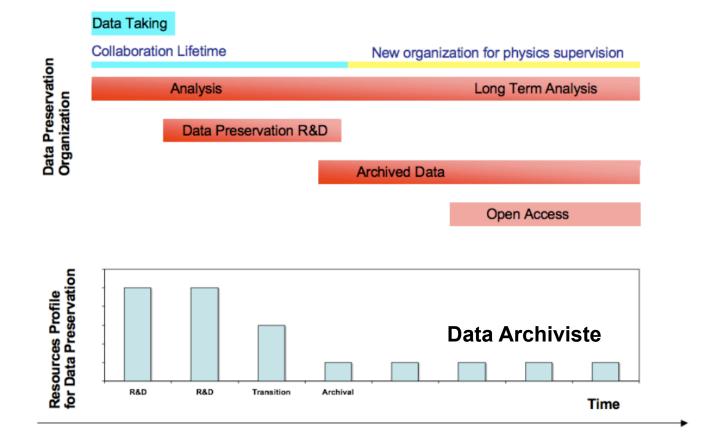
Système de préservation et migration Virtualisation, validation intensive (DESY, Hambourg, Allemagne)

Example structure of experimental tests: H1 (Level 4)

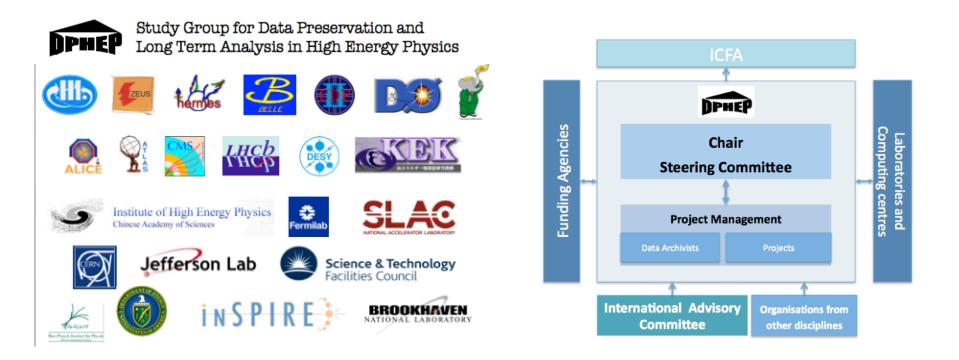


Are complex preserved data « dangerous »?

"Errors using inadequate data are much less than those using no data at all." Charles Babbage


Parse.insight

 b) Uncontrolled access to data may lead to an inflation of incorrect results (top/blue: theorists, bottom/green: experimentalists)


Governance issues are very important to support data usage

Long term organisation and economical models

The specific costs around 1% of the project Scientific outcome around 10% more papers

DPHEP:International organisation

- > Study Group DPHEP:
 - > Large laboratories CERN, DESY, FERMILAB, SLAC, KEK, IHEP and experiments
- > Organisation internationale en cours de mise en place
 - > 100 contact personnes de contact
 - > Chair: D. Diaconu Project Manager: Jamie Shiers (CERN)

DPHEP Visibility

CERN Courier, May 2009

Study group considers how to preserve data

For experimentalists in high-energy physics, the data are like treasure, but how can they be saved for the future? A study group is investigating data-preservation options.

High-energy-physics experiments collect data over long time per ods, while the associated collaborations of experimentalists exploit these data to produce their physics publications. The scientific potential of an experiment is in principle defined and exhauster within the lifetime of such collaborations. However, the continuous provement in areas of theory, experiment and simulation – as well as the advent of new ideas or unexpected discoveries - may reveal need to re-analyse old data. Examples of such analyses already xist and they are likely to become more frequent in the future As experimental complexity and the associated costs continue to crease, many present-day experiments, especially those based colliders, will provide unique data sets that are unlikely to be proved upon in the short term. The close of the current decade will see the end of data-taking at several large experiments and ntists are now confronted with the question of how to preserve

Science

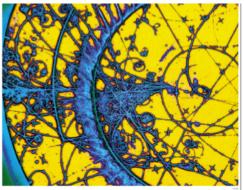
DATA PRESERVATION

A simulated event in the JADE detector, generated using a refined Monte Carlo program and reconstructed using revitalized software more than 10 years after the end of the experiment. (Courtesy Sidel Bethke.)

the complexity of the hardware and a more dynamic part closer to the analysis level. Data analysis is in most cases done in C++ using the ROOT analysis environment and is mainly performed on local computing farms. Monte Carlo simulation also uses a farm-based approach but it is striking to see how popular the Grid is for the mass ed events. The amount of data that should be is varies between 0.5 PB and 10 PB for each

tot huge by today's standards but nonetheless legree of preparation for long-term data varies but it is obvious that no preparation was foreof the programs; any conservation initiatives ilel with the end of the data analysis.

February 2011


Symmetry, December 2009

wish there were an easy way to preserve their hard-won data so future generations of scientists, armed with more powerful tools, can take advantage of it. They've launched an internationa search for solutions

Canning, pickling, drying,

freezing-physicists

Wissenschaft

Die Hieroglyphen von morgen

An Beschleunigern sind immense Datenmengen entstanden – die Archivier

Der Teilchenzoo

Berliner Zeitung and Frankfurter Rundschau, February 2010

Data Preservation

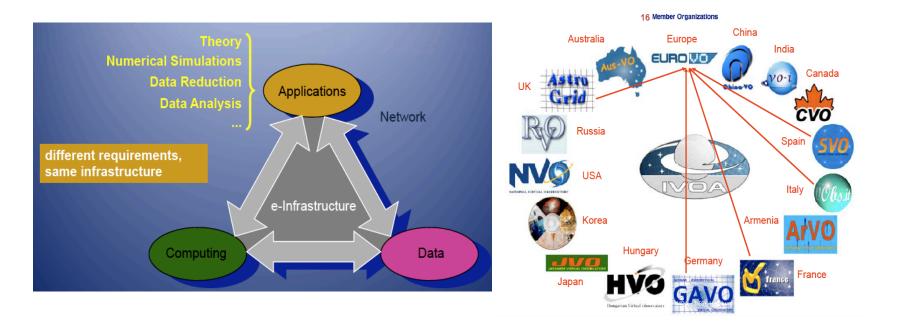
• ICFA Study Group on Data Preservation and Long Term Analysis in High Energy Physics. High Energy Physics experiments initiated with this Study Group a common reflection on data persistency and long term analysis in order to get a common vision on these issues and create a multi-experiment dynamics for further reference:

Symmetry dimension of particle physics

https://www.dphep.org/

May 2011

Rescue of Old Data Offers Lesson for Particle Physicists


Dealing with Data

Old data tends to get forgotten as physicists move on to new and better machines.

Virtual Observatories in Astrophysics


- > Data Archives Inter-operable
- > Work on standards and access to
 - Data, simulation, mining techniques
- International, multi-experiment
- > Agregated Person-power: about 100FTE

E.Pasian C. Diaconul Scientific Data Preservation ICDE/LOPS 2014 Page 32

Initiatives in other fields

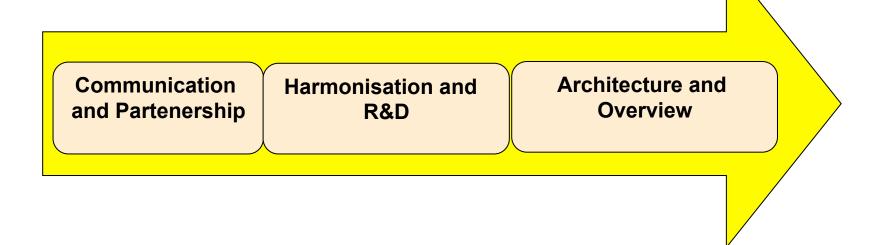
Data preservation and in particular open access and data sharing are present in other fields such as:

Astrophysics, molecular biology, earth sciences, humanities and social science

> Challenges:

- Scientific Potential: these data sets contain unexploited information, which may give rise to highly useful for joint, multi-disciplinary project.
- Complexity: the data collected by experimental devices considered in the project are unique and encodes a large typology, well beyond the regular, well-structured data produced in large quantities in the industrial world.
- Technological et methodological: the installation of procedures, workflows, algorithms for long term data preservation, as well as the definition of suitable technological frameworks constitute novel investigation domains.

PREDON Consortium


PREDON

A project for scientific data preservation in France

	Volume données	Complexité	Diversification des sources	Structuration au niveau international	Algorithmes et methodologies pour la preservation
IN2P3 HEP	+++	+++	+	++	+
INSU, IRD Astrophysics Earth Sciences	++	++	++	+++	++
CINES INS2I IT, Algorithms, workflows	+	++	+++	+	+++

PREDON: Plans

- Short term (2013/2014): Communication and partenership
 - Enlarge the community
- > Medium term (2014/2015) : Harmonisation and R&D
 - Communication: exchanges and workshops
 - Demonstrator acces and préservation
- Long term (2016) Architecture and overview
 - "Observatoire National des Données Scientifiques"

Working Package	Objectives	Participants (*coordinator)
WP1 Technologies and Methodologies	Explore methodologies and technologies suitable for a coherent and robust scientific data preservation in a multi- disciplinary context and on a multi-platform computing centre	CINES* APC
WP2 Algorithms and Workflows	Investigate generic and mathematically robust workflows and algorithms for data mining suited for data and workflow preservation; data- and process-based workflows and mining techniques to be used in a multi-disciplinary environment towards long term data preservation	LAM LIRMM LIPADE* LIPN
WP3 Data formats and interfaces	A parallel approach for data collection, storage, processing, analysis and preservation with the aim to achieve common standards for scientific data treatment	APC CPPM LAM* LPSC
WP4 General coordination	Program coordination, dissemination and international cooperation	CPPM*

Scientific data preservation: white paper

Available at htpp://predon.org

Scientific Data Preservation 2 0 1 4

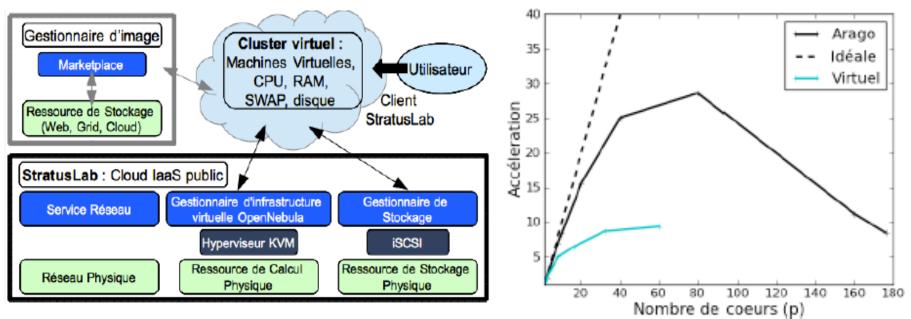
PREDON DIG DATA WORKFLOWS DATA MINING ARCH VEPRESERVATION PERSISTENCY SCIENTIFIC PERSISTENCY SCIENTIFIC DATA MINING BIG DATA

CHAPTER 1: SCIENTIFIC CASE7Data Preservation in High Energy Physics8Virtual Observatory in Astrophysics15Crystallography Open Databases and Preservation: a World-Wide Initiative20Satellite Data Management and Preservation26Seismic Data Preservation31CHAPTER 2: METHODOLOGIES37

WORKFLOWS AND SCIENTIFIC BIG DATA PRESERVATION	38
LONG TERM ARCHIVING AND CCSDS STANDARDS	42
CLOUD AND GRID METHODOLOGIES FOR DATA MANAGEMENT AND PRESERVATION	49
SCIENTIFIC DATA PRESERVATION, COPYRIGHT AND OPEN SCIENCE	55

CHAPTER 3: TECHNOLOGIES

	STORAGE TECHNOLOGY FOR DATA PRESERVATION	62
	REQUIREMENTS AND SOLUTIONS FOR ARCHIVING SCIENTIFIC DATA AT CINES	65
2	VIRTUAL ENVIRONMENTS FOR DATA PRESERVATION	73

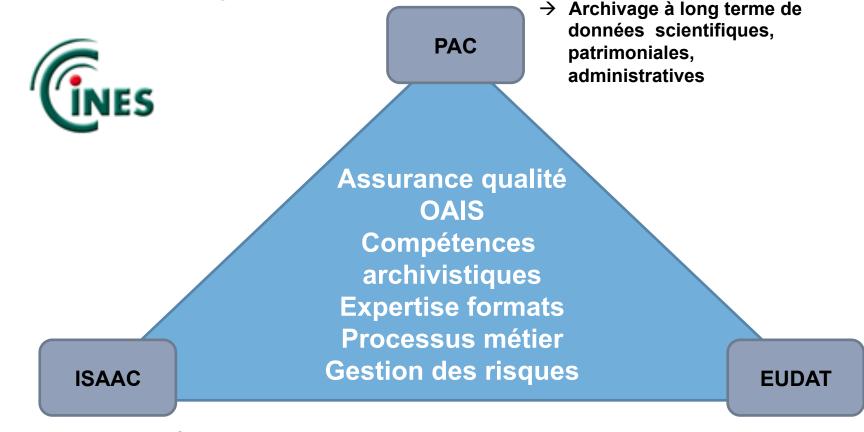

61

C. Diaconu | Scientific Data Preservation ICDE/LOPS 2014 | Page 38

Exemple projet: Data processing & storage in the cloud

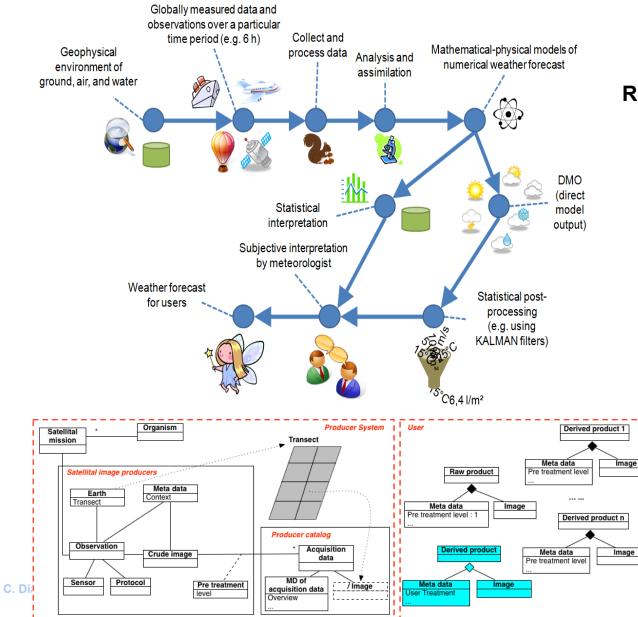
LabEx UnivEarths project at APC / François Arago Centre:

- potential of the cloud versus classical data processing and storage opportunities
- test processing on Francois Arago Centre cluster, compared with Cloud StratusLab
- questions: accessibility, data security, short-term and long-term cost


Schematic description of the cloud StratusLab, which is a European public cloud project IaaS which started in 2010.

Processing speed does accelerate much faster on a classical computing cluster compared to cloud computing (Cavet et al. 2012)

Archival expertise CINES


Les services d'archivage au CINES

→ Archivage intermédiaire de données scientifiques

→ Archivage de données scientifiques pour des communautés européennes structurées

Workflows for data preservation

Rigorous approach emerges

Long Term Archiving and CCSDS standards

Danièle Boucon, CNES

The primary objective of the Producer-Archive Interface Specification (PAIS) standard is to provide concrete XML files supporting the description and the control of transfers from a Producer to an Archive.

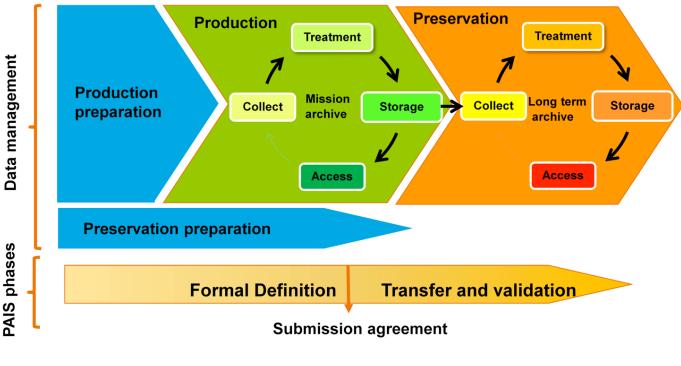
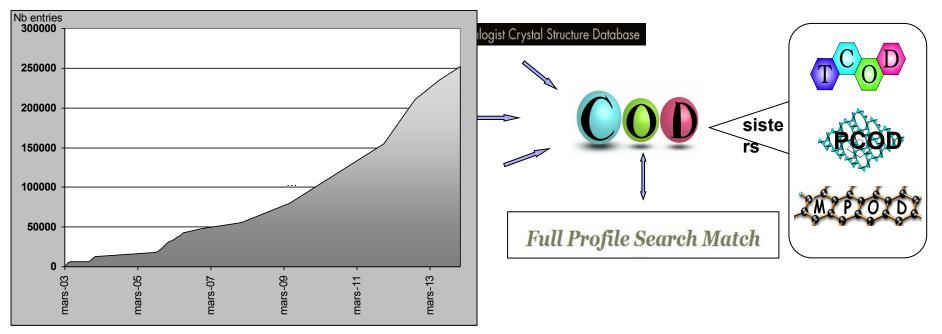
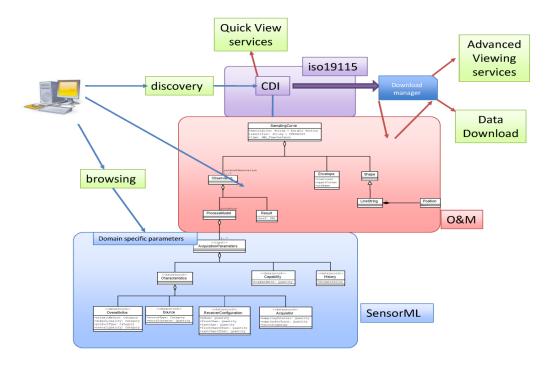



Figure 3: PAIS, preservation process and data lifecycle

Crystallography Open Databases and Preservation: a World-Wide Initiative

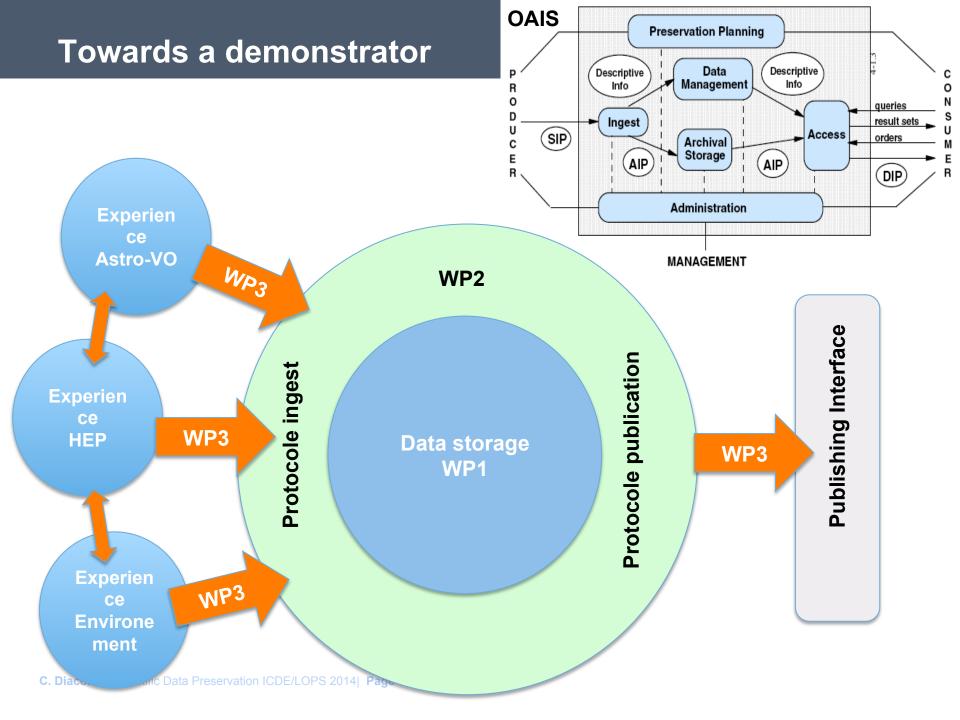
Daniel Chateigner (for the COD Advisory Board)



"...there is not yet sufficient coherence of experimental metadata standards or national policy to rely on instrumental facilities to act as permanent archives;

-there is not sufficient funding for existing crystallographic database organisations (which maintain curated archives of processed experimental data and derived structural data sets) to act as centralised stores of raw data, although they could effectively act as centralised metadata catalogues; -few institutional data repositories yet have the expertise or resources to store the large quantities of data involved with the appropriate level of discoverability and linking to derived publications." Marc SCHAMING, Institut de Physique du Globe (CNRS/UNISTRA), Strasbourg

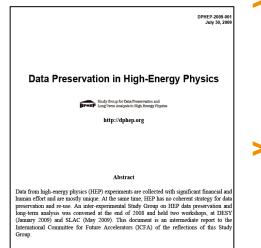
Conclusion


Preservation of seismic data is essential, but usually not considered by scientists, because it takes resources to document metadata, to read and copy tapes, to convert formats, etc. These tasks should be addressed at national and/or European level. Some European projects (Seiscan/Seiscanex, Geo-Seas) demonstrated that it is possible and useful. Repositories at national level should pursue this task with geophysical skills.

Scientific Data Preservation, Copyright and Open Science

Philippe Mouron, Aix-Marseille University, Faculté de droit et de science politique

- The best guarantee for ensuring the integrity of a resource is based on property.
- > However, isn't there a public ownership of scientific research?
 - In truth, even if the public authorities may fundamentally participate in the scientific research, this does not mean, *ipso facto*, that they own its results.
- Image: mapping and mapping
- The goal of digital preservation of scientific data must therefore be reconciled with intellectual property rights.
- > Open model of management of intellectual property rights.
 - Tools: open access licensis (e.g. Creative Commons)


Conclusions

- Research data in the recent period is a « gold mine » with unexploited research potential and therefore should be preserved long term
- > The preservation is worth the effort and enables low cost science
- International cooperation is essential
- Frontier technologies and research are involved
- Innovative sollutions can emerge from multidisciplinary initiatives

C. Diaconu | Scientific Data Preservation ICDE/LOPS 2014 | Page 48

DPHEP Intermediate Recommendations (end 2009)

arXiv:0912.0255

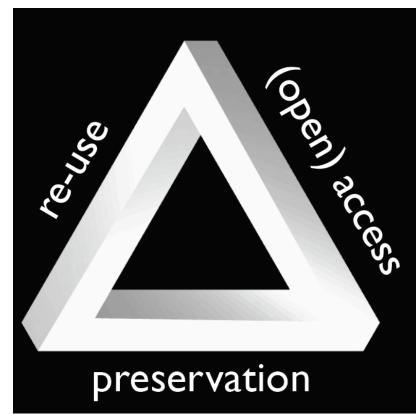
- > An urgent and vigorous action is needed to ensure data preservation in HEP
 - Many examples for the physics case explored
 - Data is rich and can be further exploited in most cases beyond the collaboration lifetime
- The preservation of the full analysis capability of experiments is recommended, including the preservation of reconstruction and simulation software
- > An interface to the experiment know-how should be introduced: data archivist position in the computing centres
- The preservation of HEP data requires a synergic action: collaborations, laboratories and funding agencies
- > An International Data Preservation Forum is proposed as a reference organisation. The Forum should represent experimental collaborations, laboratories and computing centres

DPHEP publication 2012

- Full status report of the activities of the DPHEP study group, including:
 - Tour of data preservation activities in other fields
 - An expanded description of the physics case
 - Defining and establishing data preservation principles
 - Updates from the experiments and joint projects
 - FTE estimates for these and future projects
 - Next steps to establish fully DPHEP in the field

	DPHEP-2012-00 May 201
	Status Report of the DPHEP Study Group: Towards a Global Effort for Sustainable Data Preservation in High Energy Physics
	www.dphep.org
	Abstract
S	Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. An inter-experimental Study Group on HEP data preservation and long-term analysis was convened as a panel of the International Committee for Future Accelerators (ICFA). The group was formed by aspects of the HEP data preservation. An intermediate report was released in November 2009 addressing the general issues of data preservation in HEP. This paper case for data preservation and a detailed description of the various projects at concrete proposal for an international levels. In addition, the paper provides a management and policies in high-energy physics.
	Study Group for Data Preservation and Long Term Analysis in High Energy Physics

arXiv:1205.4667


A word on access and data preservation

Example: NSF Policy

Investigators are expected to share with other researchers, at no more than incremental cost and within a reasonable time, the primary data, samples, physical collections and other supporting materials created or gathered in the course of work under NSF grants. Grantees are expected to encourage and facilitate such sharing.

Proposals [...] must include a supplementary [...] "Data Management Plan" (DMP) [...] describ[ing] how the proposal will conform to NSF policy on the dissemination and sharing of research results. http://www.nsf.gov/bfa/dias/policy/dmp.jsp

Very similar policies in other funding agencies (and growing interest for these aspects in the context of "big data" strategies)

EU Visions

Riding the wave

How Europe can gain from the rising tide of scientific data

Final report of the High Level Expert Group on Scientific Data A submission to the European Commission

October 2010

The ideal data infrastructure for science will have a long list of technical characteristics. Here are some suggestions.

Scientific e-infrastructure – a wish list

- Open deposit, allowing user-community centres to store data easily
- Bit-stream preservation, ensuring that data authenticity will be guaranteed for a specified number of years
- Format and content migration, executing CPU-intensive transformations on large data sets at the command of the communities
- Persistent identification, allowing data centres to register a huge amount of markers to track the origins and characteristics of the information
- Metadata support to allow effective management, use and understanding
- Maintaining proper access rights as the basis of all trust
- A variety of access and curation services that will vary between scientific disciplines and over time
- Execution services that allow a large group of researchers to operate on the stored date
- High reliability, so researchers can count on its availability
- Regular quality assessment to ensure adherence to all agreements
- Distributed and collaborative authentication, authorisation and accounting
- A high degree of interoperability at format and semantic level

Adapted from the PARADE White Paper at http://www.csc.fi/english/pages/parade/

A myriad of projects/coalitions on "data infrastructures" either funded or in preparation for FP8

-APA, EUDAT, DPM, RDA...

Data Preservation in a multidisciplinary context

- More Coordination: The organisation should be brought to a long-term perspective by solid, commensurate and courageous decisions of the funding and coordination bodies responsible for the wealth of HEP experimental data produced so far.
- More Standards An increased standardisation will increase the overall efficiency of HEP computing systems and it will also be beneficial in securing long-term data preservation.
- More Technology: These new techniques (virtualisation etc.) seem to fit well within the context of large scale and long-term data preservation and access.
- More Experiments: The expansion of the DPHEP organisation to include more experiments is one of the goals of the next period.

More Cooperation: Cooperation with other fields in data management: access, mining, analysis and preservation; appears to be unavoidable and will also dramatically change the management of HEP data in the future.